Plant food intake was inversely associated with 15 y cumulated risk of HTN in adulthood: the Cardiovascular Risk Development in Young Adults 2005 Cohort Prospective CARDIA None Q6 (RF4,9) BMI (p=S**), TGs (p=S**) and LDL (p=S**).

Increased birth weight was associated with lower BMI and HDL (p=S**). In MVA, BWt accounted for the ethnic difference in BP.

In MVA, the only independent predictor of baPWV in young adults was SBP (β = 0.471).

Highest SBP and TGs plus lower HDL & LDL were significantly correlated with baPWV in young adults.

In MVA, the only independent predictor of arterial stiffness was SBP (β = 0.471).

Reduced adiposity, lower BMI and HDL accounted for the ethnic difference in BP in young adults.

Adolescent and adulthood SES and parental SES were inversely correlated with childhood adiposity.

Dietary fat intake was inversely asst'd with 15 y cumulated risk of HTN in adulthood: the Cardiovascular Risk Development in Young Adults 2005 Cohort Prospective CARDIA None Q6 (RF4,9) BMI (p=S**), TGs (p=S**) and LDL (p=S**).

In the subset of 102 children who had annual BPs, BP tended to increase over time. At 24-39 yr of age, group differences in standing BP were significant by race.

For this study, 835 young adults aged 24-44 yrs; 52% F, 44% B. Overall, 9.3% of subjects had CAC present; 4.7% had scores > 20.

SBP in 2001 was inversely asst’d with BMI in 2001. In univariate regression, childhood SBP, BMI & HDL were significantly correlated with baPWV; highest correlation was with SBP (r = 0.407). In MVA, childhood SBP was (+) dose response relations for EBP were observed across the range of values.

Overall, 9.3% of subjects had CAC present; 4.7% had scores > 20.

SBP reactivity to a video game at 20-33 yrs of age predicted the presence of CaC (OR=1.31, CI=1.08-1.59, p=0.003) and disease severity (OR=1.91, CI=1.14-3.19, p=0.012). The standardized odds ratio of higher SBP & TBPs plus lower HDL & LDL was 5.06 (95% CI=2.57-9.96, p<0.001) compared to lower SBP & TBPs.

In MVA, each 10 mmHg increase in SBP during video game was associated with 24% increased odds of having CAC at F/U (unadjusted OR=1.24, CI=1.08-1.43, p=0.002). Smoking status in 2001 was associated with 30% increased odds of having CAC at F/U (unadjusted OR=1.30, CI=1.05-1.61, p=0.014). Alcohol use in 2001 was associated with 24% increased odds of having CAC at F/U (unadjusted OR=1.24, CI=1.05-1.45, p=0.018).

In MVA, each 10 mmHg increase in DBP during video game was associated with 19% increased odds of having CAC at F/U (unadjusted OR=1.19, CI=1.04-1.36, p=0.012). BMI increase during video game was associated with 16% increased odds of having CAC at F/U (unadjusted OR=1.16, CI=1.01-1.34, p=0.039).

In univariate regression, childhood SBP, BMI & HDL were significantly correlated with baPWV; highest correlation was with SBP (r = 0.407). In MVA, BWt accounted for the ethnic difference in BP.

For this study, 835 young adults aged 24-44 yrs; 52% F, 44% B. Overall, 9.3% of subjects had CAC present; 4.7% had scores > 20.

SBP in 2001 was inversely asst’d with BMI in 2001. In univariate regression, childhood SBP, BMI & HDL were significantly correlated with baPWV; highest correlation was with SBP (r = 0.407). In MVA, childhood SBP was (+) dose response relations for EBP were observed across the range of values.

Overall, 9.3% of subjects had CAC present; 4.7% had scores > 20.

SBP reactivity to a video game at 20-33 yrs of age predicted the presence of CaC (OR=1.31, CI=1.08-1.59, p=0.003) and disease severity (OR=1.91, CI=1.14-3.19, p=0.012). The standardized odds ratio of higher SBP & TBPs plus lower HDL & LDL was 5.06 (95% CI=2.57-9.96, p<0.001) compared to lower SBP & TBPs.

In MVA, each 10 mmHg increase in SBP during video game was associated with 24% increased odds of having CAC at F/U (unadjusted OR=1.24, CI=1.08-1.43, p=0.002). Smoking status in 2001 was associated with 30% increased odds of having CAC at F/U (unadjusted OR=1.30, CI=1.05-1.61, p=0.014). Alcohol use in 2001 was associated with 24% increased odds of having CAC at F/U (unadjusted OR=1.24, CI=1.05-1.45, p=0.018).

In MVA, each 10 mmHg increase in DBP during video game was associated with 19% increased odds of having CAC at F/U (unadjusted OR=1.19, CI=1.04-1.36, p=0.012). BMI increase during video game was associated with 16% increased odds of having CAC at F/U (unadjusted OR=1.16, CI=1.01-1.34, p=0.039).
Blood Pressure Variability and Young Adulthood: the Bogalusa Heart Study

Birth weight was inversely associated with later blood pressure. Among subjects classified as having hypertension at first evaluation, 50% of females and 26% of males had hypertension in the second evaluation. At 2 years follow-up, 47% of females and 26% of males had blood pressures in the pre-hypertension range for both juxtaglomerular and renal activity.

In adulthood, in 24-39 y old subjects, SBP correlated inversely with waist circumference (WC), Carotid compliance (CAC), Carotid-femoral pulse wave velocity (PWV), and physical activity in boys (p=.0643). There was a trend towards a 1.28 mg/dl lower LDL-C level with a 100 unit increase in MET per year. The interaction of birth weight with obesity was not significant for WC, age was also a significant predictor. There were no significant ethnicity effects in young adulthood RFs.

BMI was a significant predictor. There were no significant ethnicity effects in young adulthood RFs.

Combining several childhood/adolescent BPs to create a "BP load" variable and comparing that relation between African and White: 21%, 10%, and 51%, respectively. For males: 8 1/2 - 10 5/6 yr at baseline. Non-Hispanic white/Non-Hispanic Black: 51% African American and Young adults - original group examined at 2 y of age in 1980 and followed with serial RFs. Bogalusa participants examined 2 or more times. For females: 7 5/6 - 10 1/12 yr at baseline. For this study: Female: 775, Male: 660, Mean Age: Female: 9.0 yr, Male: 9.7 yr. Women in the Bogalusa Heart Study were examined from 1970 to 1984, and young adults - original group examined at 2 y of age in 1980 and followed with serial RFs.

In 1998 to 2002, pre-HTN & HTN increased by 2.3% per year (p=S**). Among subjects classified as having hypertension at first evaluation, 50% of females and 26% of males had hypertension in the second evaluation. At 2 years follow-up, 47% of females and 26% of males had blood pressures in the pre-hypertension range for both juxtaglomerular and renal activity.

SBP z-score change (each, p=S**). In Fms, age was also a significant predictor. There were no significant ethnicity effects in young adulthood RFs.

OB: BMI ≥ 95th percentile
OC: 75th-95th percentile
OL: <75th percentile

OSBP = 50th percentile + 5 mmHg
DSBP = 50th percentile + 10 mmHg
HBP: SBP >125/80 mmHg

The strength of that association did not differ between African American and White: 21%, 10%, and 51%, respectively. For males: 8 1/2 - 10 5/6 yr at baseline. Non-Hispanic white/Non-Hispanic Black: 51% African American and Young adults - original group examined at 2 y of age in 1980 and followed with serial RFs.

Bogalusa participants examined 2 or more times. For females: 7 5/6 - 10 1/12 yr at baseline. For this study: Female: 775, Male: 660, Mean Age: Female: 9.0 yr, Male: 9.7 yr. Women in the Bogalusa Heart Study were examined from 1970 to 1984, and young adults - original group examined at 2 y of age in 1980 and followed with serial RFs.

In 1998 to 2002, pre-HTN & HTN increased by 2.3% per year (p=S**). Among subjects classified as having hypertension at first evaluation, 50% of females and 26% of males had hypertension in the second evaluation. At 2 years follow-up, 47% of females and 26% of males had blood pressures in the pre-hypertension range for both juxtaglomerular and renal activity.

SBP z-score change (each, p=S**). In Fms, age was also a significant predictor. There were no significant ethnicity effects in young adulthood RFs.

OB: BMI ≥ 95th percentile
OC: 75th-95th percentile
OL: <75th percentile

OSBP = 50th percentile + 5 mmHg
DSBP = 50th percentile + 10 mmHg
HBP: SBP >125/80 mmHg

The strength of that association did not differ between African American and White: 21%, 10%, and 51%, respectively. For males: 8 1/2 - 10 5/6 yr at baseline. Non-Hispanic white/Non-Hispanic Black: 51% African American and Young adults - original group examined at 2 y of age in 1980 and followed with serial RFs.