Increased coronary mortality in relatives of hypertriglyceridemic school children: young adults. The Bogalusa Heart Study (other).


Coronary risk factors in adolescents.

Apolipoprotein B and AI distributions in first & 2nd degree relatives of 75 children from the Muscatine population with TGs > 95th%. Offspring of parents with HTN were overweight regardless of age and showed significant increases in insulin, glucose, TGs, TC, VLDL-C after 17 yrs, irrespective of weight.

No difference in non-lipid RF profiles between index cases, first or second degree relatives, suggesting that TG levels alone are not an important risk factor.

Among the family members of children aged 8-18 y at enrollment, SBP and DBP at < 55y; Fam hx of high cholesterol --> 3 groups: (-) (-) vs (+) parental hx of high cholesterol identified no statistically significant differences for RFs.

By ANOVA for race and sex in 18-31 y olds, parental MI related strongly to higher BP levels after 10 yrs and elevated TGs and VLDL-C after 24 yrs, irrespective of weight.

By ANOVA for race and sex in 18-31 y olds, parental DM showed a strong association with higher PI and higher FG in B females.

By ANOVA for race/sex in 5-17 y olds, only significant association was between parental hx of diabetes and greater PI in BFs.

When lipid results for HTG & LTG family members are compared, TC & TG levels were significantly lower in LTG compared to HTG. However, HDL-C levels were similar in Ms & Fs.

In females, apoB levels peaked twice, between 20-49 yrs and again after age 59 y. Death from MI was 10X greater in females in the HTC group vs. females in the MTC group. When lipid results for HTG & LTG family members are compared, TC & TG levels were significantly lower in LTG compared to HTG. However, HDL-C levels were similar in Ms & Fs.

In females, apoB levels peaked twice, between 20-49 yrs and again after age 59 y. Death from MI was 10X greater in females in the HTC group vs. females in the MTC group. No difference in non-lipid RF profiles between index cases, first or second degree relatives, suggesting that TG levels alone are not an important risk factor.

Familial elevation of TC levels appears to be important in screening for individuals > 4 yrs of age. However, the criterion for HC & LC not given.

No heart disease - No parent or grandparent --> 3 groups: (-) vs (+) parental hx of early CHD was associated with significantly higher BMI than in groups with no parental hx of early CHD. However, the criterion for HC & LC not given.

9% in Ws and 3 to 19% in Bs; parental DM increased from 7 to 19% in Ws and 1 to 11% in Bs.

Age, gender & race-related differences are incomplete so use of fam hx in screening is limited.

In the Muscatine Community, the prevalence of early CHD is low and age, gender & race-related differences are incomplete so use of fam hx in screening is limited.

There is suggestive that parents' TC levels correlated and cholesterol levels in their children. When lipid results for HTG & LTG family members are compared, TC & TG levels were significantly lower in LTG compared to HTG. However, HDL-C levels were similar in Ms & Fs.

In females, apoB levels peaked twice, between 20-49 yrs and again after age 59 y. Death from MI was 10X greater in females in the HTC group vs. females in the MTC group. No difference in non-lipid RF profiles between index cases, first or second degree relatives, suggesting that TG levels alone are not an important risk factor.

Familial elevation of TC levels appears to be important in screening for individuals > 4 yrs of age. However, the criterion for HC & LC not given.

No heart disease - No parent or grandparent --> 3 groups: (-) vs (+) parental hx of early CHD was associated with significantly higher BMI than in groups with no parental hx of early CHD. However, the criterion for HC & LC not given.

9% in Ws and 3 to 19% in Bs; parental DM increased from 7 to 19% in Ws and 1 to 11% in Bs.

Age, gender & race-related differences are incomplete so use of fam hx in screening is limited.

In the Muscatine Community, the prevalence of early CHD is low and age, gender & race-related differences are incomplete so use of fam hx in screening is limited.
<table>
<thead>
<tr>
<th>Study</th>
<th>First Author</th>
<th>Title</th>
<th>Year</th>
<th>Type of Study</th>
<th>Country</th>
<th>Setting</th>
<th>Main Study Objective</th>
<th>Eligibility Criteria</th>
<th>Patient Characteristics</th>
<th>Study Groups</th>
<th>Total Follow-up Duration</th>
<th>Outcomes Measured</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>9439456</td>
<td>Bachorik PS</td>
<td>Apolipoprotein B and A1 distributions in the United States, 1988–1991: results of the National Health and Nutrition Examination Survey III (NHANES III)</td>
<td>1997</td>
<td>Prospect./Retrospect. Study</td>
<td>CVD RF by CQ</td>
<td>Country Setting</td>
<td>Main Study Objective</td>
<td>Eligibility Criteria</td>
<td>Patient Characteristics</td>
<td>Study Groups</td>
<td>Total Follow-up Duration</td>
<td>Outcomes Measured</td>
<td>Results</td>
</tr>
<tr>
<td>16614318</td>
<td>Juonala M</td>
<td>Young adults with family history of coronary heart disease have increased arterial vulnerability to metabolic risk factors: the Cardiovascular Risk in Young Finns Study</td>
<td>2006</td>
<td>Cohort Prospective</td>
<td>Young Finns</td>
<td>Multiple Q3(RF1)</td>
<td>Finland Community</td>
<td>Correlate family history of coronary disease with subclinical measures of atherosclerosis</td>
<td>Study Groups</td>
<td>Total Follow-up Duration</td>
<td>Outcomes Measured</td>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>