- Health Topics
- The Science
- Grants and Training
- News and Events
- About NHLBI
The goal of the WGS project is to collect whole-genome sequencing data from individuals with well-defined phenotypes and existing clinical outcomes data. This project supports the Trans-Omics for Precision Medicine (TOPMed) program, which generates scientific resources to improve the understanding of heart, lung, blood, and sleep disorders and advance precision medicine.
In 2016, the NHLBI released its Strategic Vision, which will guide the Institute’s research activities for the coming decade. The WGS project addresses many of the objectives, compelling questions, and critical challenges identified in the plan that relate to genomic research. For example, the WGS project will enable research on how genes affect individual disease processes. The project will also leverage data from diverse participants in NHLBI’s population and epidemiology studies to enable research on how genes contribute to health differences among populations.
The WGS project aims to provide whole-genome sequencing data that researchers can use to identify genetic markers of increased or decreased risk of heart, lung, blood, and sleep disorders, as well as markers that help define disorder subtypes. Among the WGS project participants are people who have these conditions:
The NHLBI TOPMed program will combine genomic data from the WGS project with other -omics data and with molecular, behavioral, imaging, environmental, and clinical data from participants. These data resources will advance research to improve the prevention and treatment of heart, lung, blood, and sleep disorders.
The WGS project has performed whole-genome sequencing on over 90,000 participants from over 30 studies. Many of these participants are from the following NHLBI-funded studies:
The WGS project is making strides to establish a genomic resource that reflects the diverse U.S. population. Among current WGS project participants, less than 50 percent are of European descent, 30 percent are of African descent, 10 percent are of Hispanic/Latino descent, and 8 percent are of Asian descent. A recent study found that 81 percent of participants in genome-wide association studies are of European ancestry. By intentionally including participants with a variety of racial and ethnic backgrounds, the WGS is creating a unique and valuable genomic resource.
Researchers have started releasing WGS project data through the NIH Database of Genotypes and Phenotypes (dbGaP). The dbGaP was developed to archive and distribute data from studies that have investigated the interaction of genotype and phenotype, including all genome-wide association studies supported by the NIH. Currently, the WGS project has released over 30,000 whole genome sequences in dbGAP and approximately 45,000 more will be added to dbGaP in early 2018.
The NHLBI will continue growing this valuable whole-genome sequence public data resource and hopes to sequence over 120,000 individual genomes. As this effort expands, we will look for ways to include more underrepresented groups and heart, lung, blood, and sleep disorders. We also will look for opportunities to integrate whole-genome sequencing with other -omics data.
WHAT: In a bold step for precision medicine, researchers at the National, Heart, Lung, and Blood Institute (NHLBI) today announced they are releasing for study nearly 9,000 whole genomes, courtesy of participants in the Institute’s Trans-Omics for Precision Medicine Program (TOPMed). The genomes—an organism’s complete set of DNA—are the first ever...