ACKNOWLEDGMENTS

CHAIR
Sheldon G. Sheps, MD (Mayo Clinic and Mayo Foundation and Mayo Medical School, Rochester, MN)

EXECUTIVE COMMITTEE
Henry R. Black, MD, Chair of Chapter 1 (Rush-Presbyterian-St. Luke’s Medical Center, Chicago, IL); Jerome D. Cohen, MD, Chair of Chapter 2 (St. Louis University Health Sciences Center, St. Louis, MO); Norman M. Kaplan, MD, Chair of Chapter 3 (University of Texas Southwestern Medical School, Dallas, TX); Keith C. Ferdinand, MD, Chair of Chapter 4 (Heartbeats Life Center, New Orleans, LA); Aram V. Chobanian, MD (Boston University, Boston, MA); Harriet P. Dushman, MD (University of Vermont College of Medicine, Burlington, VT); Ray W. Gifford, Jr., MD (Cleveland Clinic Foundation, Cleveland, OH); Marvin Moser, MD (Yale University School of Medicine, New Haven, CT); Sheldon G. Sheps, MD (Mayo Clinic and Mayo Foundation and Mayo Medical School, Rochester, MN).

CONTRIBUTORS
Lawrence Agodoa, MD (National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD); Phyllis A. August, MD (New York Hospital, New York, NY); George L. Bakris, MD (Rush-Presbyterian-St. Luke’s Medical Center, Chicago, IL); Vicki Burt, RN, ScM (National Center for Health Statistics, Hyattsville, MD); William Busse, MD (University of Wisconsin, Madison, WI); Barry L. Carter, PharmD (University of Colorado, Denver, CO); Francis D. Chesley, MD (Agency for Health Care Policy and Research, Rockville, MD); James Cleeman, MD (National Heart, Lung, and Blood Institute, Bethesda, MD); Jay N. Cohn, MD (University of Minnesota Medical School, Minneapolis, MN); Louis L. Creger, MD (City University of New York Medical School, New York, NY); Carlos Crespo, DrPH, MS (American Heart Association, Washington, DC); William C. Cushman, MD (University of Tennessee College of Medicine, Memphis, TN); Jeffrey Cutler, MD, MPH (National Heart, Lung, and Blood Institute, Bethesda, MD); Mark D. Darrow, MD (East Carolina University School of Medicine, Greenville, NC); Vincent L. deQuattro, MD (University of Southern California Medical Center, Los Angeles, CA); Richard B. Devereux, MD (Cornell University Medical Center, New York, NY); Lance D. Dworkin, MD (Rhode Island Hospital, Providence, RI); William J. Elliott, MD, PhD (Rush-Presbyterian-St. Luke’s Medical Center, Chicago, IL); Murray Epstein, MD (University of Miami School of Medicine, Miami, FL); Bonita Falkner, MD (Allegheny University of the Health Sciences, Philadelphia, PA); Carlos M. Ferrario, MD (Bowman Gray School of Medicine, Winston-Salem, NC); John M. Flack, MD, MPH (Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC); William Frishman, MD (Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY); Edward D. Frohlich, MD (Alton Ochsner Medical Foundation, New Orleans, LA); Lee A. Green, MD, MPH (University of Michigan, Ann Arbor, MI); Richard H. Grimm, Jr., MD, PhD (University of Minnesota Medical School, Minneapolis, MN); James M. Hagberg, PhD (University of Maryland, College Park, MD); W. Dallas Hall, MD (Emory University, Atlanta, GA); Joel H. Handler, MD (Kaiser Permanente, Anaheim, CA); Stephen A. Hvas, MD, MPH, MS (University of Maryland School of Medicine, Baltimore, MD); Martha N. Hilt, PhD, MSN (Johns Hopkins University, Baltimore, MD); Michael J. Horan, MD, ScM (National Heart, Lung, and Blood Institute, Bethesda, MD); Willis A. Hsueh, MD (University of Southern California Medical Center, Los Angeles, CA); Barry N. Hyman, MD (Baylor College of Medicine, Houston, TX); Joseph L. Izzo, Jr., MD (State University of New York, Buffalo, NY); Kenneth J. Jamerson, MD (University of Michigan Medical Center, Ann Arbor, MI); James P. Kiley, PhD (National Heart, Lung, and Blood Institute, Bethesda, MD); Meenhard S. Kochar, MD, MS (Medical College of Wisconsin, Milwaukee, WI); Kathryn M. Kolasa, PhD, RD, LDN (East Carolina University School of Medicine, Greenville, NC); Lawrence R. Kranoff, MD (Englewood Hospital, Englewood, NJ); Daniel Levy, MD (Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA); Marshall D. Lindheimer, MD (University of Chicago Hospitals, Chicago, IL); Russell V. Luepker, MD (University of Minnesota, Minneapolis, MN); Mary E. Leavell Malone, MA, MSN (Jefferson Community College, Louisville, KY); Barry Massie, MD (University of California, San Francisco, CA); Barry J. Materson, MD, MBA (University of Miami, Miami, FL); Jay Merchant, MHA (Health Care Financing Administration, Washington, DC); Franz H. Messeri, MD (Ochsner Clinic and Alton Ochsner Medical Foundation, New Orleans, LA); Nancy Houston Miller, BSN (Stanford Cardiac Rehabilitation Program, Palo Alto, CA); Michael A. Moore, MD (Bowman Gray School of Medicine, Winston-Salem, NC); Lisa Mustone-Alexander, MPH, PA (George Washington University School of Medicine and Health Sciences, Washington, DC); Suzanne Oparil, MD (University of Alabama at Birmingham, Birmingham, AL); Vasileios Papademetriou, MD (Veterans Affairs Medical Center, Washington, DC); H. Mitchell Perrin, Jr., MD (Washington University School of Medicine, St. Louis, MO); Thomas G. Pickering, MD, DPhil (Cornell University Medical Center, New York, NY); J. Howard Pratt, MD (Indiana University School of Medicine, Indianapolis, IN); C. Venkata S. Ram, MD (University of Texas Southwestern Medical Center, Dallas, TX); Otello S. Randall, MD (Howard University College of Medicine, Washington, DC).
Mary C. Winston, EdD, RD (American Dietetic Association); Jackson T. Wright, Jr., MD, PhD (Case Western Reserve University, Cleveland, OH); Shirley M. Caudill, RN, BSN (American Nurses' Association); Marvin Moser, MD (National High Blood Pressure Education Program); Lisa S. Ford, PhD (National Heart, Lung, and Blood Institute, Bethesda, MD); Edward J. Roccella, PhD, MPH (National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD); David G. Vitez, MD (Mayo Clinic and Mayo Foundation, Rochester, MN); Thomas Thom, BA (National Heart, Lung, and Blood Institute, Bethesda, MD); Piero De Caterina, MD, PhD (University of Chicago, Chicago, IL); Donald G. Vidt, MD (Cleveland Clinic Foundation, Cleveland, OH); H. Black, MD (American Heart Association); Richard W. Erwin, MD (Mayo Clinic and Mayo Foundation, Rochester, MN); Stephen L. Kopecky, MD (University of Michigan Medical Center, Ann Arbor, MI); Pamela J. Colman, DPMP (American Podiatric Medical Association); Thelma Edwards, RN (National Stroke Association); Murray Epstein, MD (National Kidney Foundation); Donna M. Feeley, MPH (American Red Cross); Kathleen Conner, MD (Mayo Clinic and Mayo Foundation, Rochester, MN); Lee A. Green, MD, MPH (American Academy of Family Physicians); Ray W. Gifford, Jr., MD (American Medical Association); Lee A. Green, MD, MPH (American Academy of Family Physicians); Stephen H. Ayres, MD, MPH, MS (American Public Health Association); Caroline Hynes, RN, MPH, COHN (American Association of Occupational Health Nurses); Barry N. Hyman, MD (American Academy of Ophthalmology); Joseph L. Izzo, Jr., MD (Council on Geriatric Cardiology); Norman M. Kaplan, MD (American Society of Hypertension); Kathryn M. Kolasa, PhD, RD, LDN (Society for Nutrition Education); David Levine, MD, ScD, MPH (American College of Preventive Medicine); Mary E. Lavoie, MSN, RN (National Heart, Lung, and Blood Institute, Bethesda, MD); William Manger, MD, PhD (National Hypertension Association); Edwin C. Marshall, OD, MPH (National Health Education Association); Jay Merchant, MPH, HHA (Health Care Financing Administration); Nancy Houston Miller, BSN (American Nurses' Association); Marvin Moser, MD (National High Blood Pressure Education Program); Lisa Mustone-Alexander, MPH, PA (American Academy of Physician Assistants); William A. Nickens, DO (American Osteopathic Association); H. Mitchell Perry, Jr., MD (Mayo Clinic and Mayo Foundation, Rochester, MN); Albert A. Carr, MD (Circulatory Disease Center—Augusta Preventive Cardiology, Augusta, GA); Mary Hand, MSPH, RN (National Heart, Lung, and Blood Institute, Bethesda, MD); David C. Holden, MD (Family Practice, Peoria, IL); Michael J. Jameson, MD (University of Texas Health Science Center, San Antonio, TX); Steve J. Marcus, MD (University of Michigan Medical Center, Ann Arbor, MI); George A. Mensah, MD (Medical College of Georgia, Augusta, GA); L. Michael Prisant, MD (Medical College of Georgia, Augusta, GA); Jay M. Sullivan, MD (University of Tennessee, Memphis, TN); Daniel J. Wilson, MD (Mayo Clinic and Mayo Foundation and Mayo Medical School, Rochester, MN).

**STAFF**

Edward J. Roccella, PhD, MPH (National Heart, Lung, and Blood Institute, Bethesda, MD); Gregory Morosco, PhD, MPH (National Heart, Lung, and Blood Institute, Bethesda, MD); Darrell E. Anderson, MS (R.O.W. Sciences, Inc., Rockville, MD); Debra Waugh, BA (R.O.W. Sciences, Inc., Rockville, MD).
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Organization and Method</td>
<td>5</td>
</tr>
<tr>
<td>Evidence Base</td>
<td>7</td>
</tr>
<tr>
<td>Clinical Policy</td>
<td>7</td>
</tr>
<tr>
<td>Public Health Challenges of Hypertension</td>
<td>8</td>
</tr>
<tr>
<td>Community Programs</td>
<td>9</td>
</tr>
<tr>
<td>Summary</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 2: Blood Pressure Measurement and Clinical Evaluation</td>
<td>11</td>
</tr>
<tr>
<td>Detection and Confirmation</td>
<td>12</td>
</tr>
<tr>
<td>Self-Measurement of Blood Pressure</td>
<td>12</td>
</tr>
<tr>
<td>Ambulatory Blood Pressure Monitoring</td>
<td>13</td>
</tr>
<tr>
<td>Evaluation</td>
<td>14</td>
</tr>
<tr>
<td>Identifiable Causes of Hypertension</td>
<td>15</td>
</tr>
<tr>
<td>Risk Stratification</td>
<td>16</td>
</tr>
<tr>
<td>Summary</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 3: Prevention and Treatment of High Blood Pressure</td>
<td>19</td>
</tr>
<tr>
<td>Potential for Primary Prevention of Hypertension</td>
<td>19</td>
</tr>
<tr>
<td>Goal</td>
<td>19</td>
</tr>
<tr>
<td>Lifestyle Modifications</td>
<td>20</td>
</tr>
<tr>
<td>Pharmacologic Treatment</td>
<td>23</td>
</tr>
<tr>
<td>Considerations for Adherence to Therapy</td>
<td>37</td>
</tr>
<tr>
<td>Hypertensive Crises: Emergencies and Urgencies</td>
<td>38</td>
</tr>
<tr>
<td>Summary</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 4: Special Populations and Situations</td>
<td>41</td>
</tr>
<tr>
<td>Hypertension in Racial and Ethnic Minorities</td>
<td>41</td>
</tr>
<tr>
<td>Hypertension in Children and Adolescents</td>
<td>42</td>
</tr>
<tr>
<td>Hypertension in Women</td>
<td>42</td>
</tr>
<tr>
<td>Hypertension in Older Persons</td>
<td>45</td>
</tr>
<tr>
<td>Patients With Hypertension and Coexisting Cardiovascular Diseases</td>
<td>46</td>
</tr>
<tr>
<td>Patients With Hypertension and Other Coexisting Diseases</td>
<td>47</td>
</tr>
<tr>
<td>Patients Undergoing Surgery</td>
<td>51</td>
</tr>
</tbody>
</table>
FOREWORD

The purpose of the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC VI) is to provide guidance for primary care clinicians. The committee recognizes that the responsible clinician’s judgment of the individual patient’s needs remains paramount. Therefore, this national guideline should serve as a tool to be adapted and implemented in local and individual situations. Using evidence-based medicine and consensus, the report updates contemporary approaches to hypertension control. Among the issues covered are the important need for prevention of high blood pressure by improving lifestyles, the cost of health care, the use of self-measurement of blood pressure, the role of managed care in the treatment of high blood pressure, the introduction of new combination antihypertensive medications and angiotensin II receptor blockers, and strategies for improving adherence to treatment. The JNC VI report places more emphasis than earlier reports on absolute risk and benefit and uses risk stratification as part of the treatment strategy. This report strongly encourages lifestyle modification to prevent high blood pressure, as definitive therapy for some, and as adjunctive therapy for all persons with hypertension. On the basis of outcomes data from randomized controlled trials, this report recommends starting pharmacologic therapy with diuretics and beta-blockers for patients with uncomplicated hypertension and provides compelling indications for specific agents in certain clinical situations. This document also states that it is appropriate to choose other classes of antihypertensive agents in certain clinical situations and in patients with comorbid conditions. The National High Blood Pressure Education Program Coordinating Committee will release other advisories as the scientific evidence becomes available.

Dr. Sheldon Sheps is to be congratulated for leading the efforts to develop this document. He, along with the executive committee, worked diligently and brilliantly to assemble this report. This is evidence of how to use available science to develop practical guidelines for busy clinicians.

Claude Lenfant, M.D.
Director
National Heart, Lung, and Blood Institute
CHAPTER 1

INTRODUCTION

The National High Blood Pressure Education Program (NHBPEP), coordinated by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health, was established in 1972. The program is succeeding in its mission of increasing awareness, prevention, treatment, and control of hypertension (table 1). From the 1976-80 National Health and Nutrition Examination Survey (NHANES II) to the 1988-91 survey (NHANES III, phase 1), the percentage of Americans who are aware that they have high blood pressure increased from 51 to 73 percent. Among persons with hypertension, treatment has increased during that same period from 31 to 55 percent. The number of persons with high blood pressure controlled to below 140/90 mm Hg has increased from 10 percent in the NHANES II to 29 percent in the NHANES III, phase 1. These changes have contributed to dramatic reductions in morbidity and mortality attributable to hypertension. For example, age-adjusted death rates from stroke have declined by nearly 60 percent and from coronary heart disease (CHD) by 53 percent. These trends are evident in men and women and in African Americans and whites (figures 1 and 2). The benefit of reduction in stroke mortality is particularly striking in women age 50 and older: one-half of the benefit among white women and nearly two-thirds of the benefit among African American women can be attributed to the fall in blood pressure. These improvements are consistent with the decline in disability among older Americans and have important implications for reducing national health care costs.

<table>
<thead>
<tr>
<th>TRENDS IN THE AWARENESS, TREATMENT, AND CONTROL OF HIGH BLOOD PRESSURE IN ADULTS: UNITED STATES, 1976-94*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Awareness</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Control†</td>
</tr>
</tbody>
</table>

* Data are for adults age 18 to 74 years with SBP of 140 mm Hg or greater, DBP of 90 mm Hg or greater, or taking antihypertensive medication.
† SBP below 140 mm Hg and DBP below 90 mm Hg.

Source: Burt V et al.1 and unpublished NHANES III, phase 2, data provided by the Centers for Disease Control and Prevention, National Center for Health Statistics.2
Figure 1


Source: Prepared by the NHLBI using data from Vital Statistics of the United States, National Center for Health Statistics. Age-adjusted to the 1940 U.S. census population. The decline in age-adjusted mortality from stroke in the total population is 59.0 percent.

Figure 2


Source: Prepared by the NHLBI using data from Vital Statistics of the United States, National Center for Health Statistics. Age-adjusted to the 1940 U.S. census population. The decline in age-adjusted mortality from stroke in the total population is 59.0 percent.
However, since publication of the Fifth Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V), these dramatic improvements have slowed; since 1993, age-adjusted stroke rates have risen slightly, and the slope of the age-adjusted rate of decline in CHD appears to be leveling. Furthermore, rates have increased for both the incidence of end-stage renal disease, for which high blood pressure is the second most common antecedent, and the prevalence of heart failure, wherein the large majority of patients have antecedent hypertension (figures 3 and 4).

Moreover, hypertension control rates have not continued to improve (NHLSTEPS III, phase 2) (table 1). If awareness, treatment, and control rates had continued the trend established between 1976-80 and 1988-91, there would have been an increase in 1991-94 in awareness to 76.2 percent, in treatment to 59.6 percent, and in control to 31.2 percent instead of the levels shown in table 1. In addition, recent reports from Minnesota have shown a decrease in awareness, treatment, and control of hypertension.

**Organization and Method**

The NHBPPEP Coordinating Committee consists of representatives from 38 national professional, public, and voluntary health organizations and 7 Federal agencies. After this committee ascertained the need for a JNC VI report, NHLBI staff conducted and reported on focus groups among primary care physicians regarding the nature and purpose of national guidelines and to determine how the guidelines could best be structured to help busy clinicians. These focus groups recommended that guidelines for busy clinicians must be succinct and user-friendly.

The preparation of the JNC VI report was coordinated by an executive committee, composed of the JNC VI chair, the chairs of the individual chapter writing teams, and the chairs of four previous JNC reports—a total of nine individuals. Contributions were obtained from multidisciplinary experts from the fields of medicine, nursing, nutrition, pharmacy, and public health, whose submissions were condensed, assembled, reviewed, and edited by the executive committee.

The contributing team members were asked to review the English-language literature on hypertension published since January 1992 for their sections. Previous literature was reviewed in earlier reports. However, in some instances, earlier literature was included to strengthen evidence-based recommendations. Inclusion decisions were made by the same experts. The data have been synthesized into recommendations by consensus of the executive committee, which considered the nature and quality of the study designs and analyses. Additional experts in specific areas were consulted as needed. Each contributor had the opportunity to review and comment on the entire document.

The executive committee met in person on six occasions, conducted several teleconferences, and had extensive correspondence. The executive committee used a modified nominal group process to identify and resolve issues. On behalf of the executive committee, the JNC VI chair reported to the NHBPPEP Coordinating Committee, which reviewed the document at its spring 1997 meeting and submitted written comments to the executive committee. The Coordinating Committee had the final vote of approval on the report.

The development of this report was funded entirely by the NHLBI. The executive committee, contributors, reviewers, and Coordinating Committee members served as volunteers and were remunerated only for travel expenses pertaining to Coordinating Committee and executive committee meetings.
Figure 3

Incidence Rates per Million Population of Reported End-Stage Renal Disease Therapy, 1982-95, Adjusted for Age, Race, and Sex

*Provisional data.
Source: U.S. Renal Data System, 1997.6

Figure 4

Prevalence of Heart Failure, by Age, 1976-80 and 1988-91

Furthermore, the average blood pressure of a cohort in Iowa that has been serially evaluated and age-adjusted has risen. Progress has been steady toward reaching the U.S. Department of Health and Human Services goals for heart disease and stroke, but additional efforts are necessary to meet these objectives by the year 2000.

Heart disease and stroke remain the first and third leading causes of death, respectively, in the United States and impose an enormous financial and social burden on Americans (more than $259 billion in direct and indirect costs). In particular, the continued high prevalence of hypertension and hypertension-related complications of stroke, heart failure, and end-stage renal disease in the southeastern United States makes these diseases a public health concern for all who reside in this region, particularly African Americans. These disturbing trends support the need to enhance public and professional education and to translate the results of research into improved health.

Evidence Base
The studies that provided evidence supporting the recommendations for prevention and treatment (chapters 3 and 4) were classified by the writers and staff and reviewed by the chapter chairs. For the purpose of this report, the classification was adapted from Last and Abramson as follows:

M meta-analyses— an analysis of a compendium of experimental studies;
Ra randomized controlled trials— also known as experimental studies;
Re retrospective analyses— also known as case control studies;
F prospective followup— also known as cohort studies, including historical cohort studies and long-term followup;
X cross-sectional population studies— also known as prevalence studies;
Pr previous review or position statements; and
C clinical interventions (nonrandomized).

These symbols follow the references in the reference list of the report as well as the citations in chapters 3 and 4 in the text. Some references may have more than one code depending on the component of the study cited (e.g., a randomized controlled trial having a long-term followup).

Clinical Policy
In considering the evidence to formulate clinical policy, absolute rather than relative changes were considered because the absolute benefit derived from treating hypertension depends on the absolute risk; that is, those at greater risk will achieve greater benefit (figure 5). Information from randomized controlled trials (RCTs) indicates the reduction in the number of cardiovascular events in a known time period among patients with defined hypertension. The inverse of absolute risk reduction is the number of patients needed to be treated to prevent one event. In the clinical policy presented below, the JNC report emphasizes interventions that have been shown to reduce the incidence of adverse clinical outcomes, mostly from RCTs, which remain the best source of evidence.

Nonetheless, RCTs do have limitations, which are summarized as follows:

- RCTs are of short to moderate duration, and benefits of hypertension treatment accrue over a lifetime.
- Most RCTs do not include a true placebo group, thus underestimating the beneficial effect of the trials. For example, the control group may include those receiving treatment according to protocol or by their personal clinician after commencement of the trial (the drop-in effect), the true effects of the treatment may be diluted by those who stopped it (the drop-out effect), or the trial is a comparison of two forms of therapy.
- RCTs do not truly represent clinical practice because some patients (typically those at higher risk) are excluded from trials, such as patients with recent stroke or myocardial infarction or patients with a specific need for
the study drug (e.g., beta-blockers). Thus, the study cohort may be at lower risk than the general population.

- The average reduction in blood pressure in RCTs is modest and underestimates the additional benefits that accrue from larger decreases in blood pressure, which may be seen in individual patients.

- RCTs focus primarily on a priori endpoints and not necessarily on other benefits of therapy (e.g., prevention of progression to disease endpoints, improved quality of life, reduced impact of comorbid conditions, fewer workdays missed because of illness).

- Finally, the methods used in constructing meta-analyses vary by author; thus, the conclusions (e.g., number of patients needed to treat to prevent one event) may differ.

Because of these limitations, the executive committee extrapolated treatment effects beyond the duration of the clinical trials based on physiological and epidemiological data.

**PUBLIC HEALTH CHALLENGES OF HYPERTENSION**

The prevention and treatment of hypertension represent major public health challenges for the United States as we enter the new millennium. These are the challenges:

- **Prevent the rise of blood pressure with age.** If the U.S. population retained the average blood pressure levels of young adults, there would be less cardiovascular disease.

- **Decrease the existing prevalence of hypertension.** Approximately 50 million adult Americans have hypertension.24

- **Increase hypertension awareness and detection.** A large number of adult Americans with hypertension are still unaware that they have high blood pressure.24

- **Improve control of hypertension.** Nearly three-fourths of adult Americans with hypertension are not controlling their blood pressure to below 140/90 mm Hg.24

- **Reduce cardiovascular risks.** Most persons with hypertension have additional risk factors for cardiovascular disease.25

- **Increase recognition of the importance of controlled isolated systolic hypertension.** The majority of persons with isolated systolic hypertension are not adequately controlling their blood pressure despite persuasive data from clinical trials documenting the benefit of treatment.24
• Improve recognition of the importance of high-normal blood pressure. The impact of high-normal blood pressure—systolic blood pressure of 130 to 139 mm Hg and diastolic blood pressure of 85 to 89 mm Hg—on the development of hypertension and target organ damage remains unappreciated.26,27

• Reduce ethnic, socioeconomic, and regional variations in hypertension. Differences remain in the prevalence of hypertension, high-normal blood pressure, and cardiovascular events in different ethnic and socioeconomic groups and geographic regions.14

• Improve opportunities for treatment. Well-tolerated and affordable treatment options, including both lifestyle modifications and pharmacologic treatment, are not being universally applied.14

• Enhance community programs. In the face of declining budgets, community programs are challenged to increase activities to prevent high blood pressure and serve more persons with hypertension.

**Community Programs**

During its 25-year history, the NHBPEP has developed a broad array of community-based activities designed to promote prevention, raise awareness, screen for high blood pressure and other cardiovascular risk factors, improve adherence to therapy, and reduce morbidity and mortality. Community program activities are addressed fully in NHLBI publications and other documents.28-39

**Summary**

• Hypertension awareness, treatment, and control rates have increased over the past 3 decades. The rates of increase have lessened since publication of the JNC V report.

• Age-adjusted mortality rates for stroke and coronary heart disease declined during this time but now appear to be leveling.

• The incidence of end-stage renal disease and the prevalence of heart failure are increasing.

• Randomized controlled trials provide the best method of estimating the benefit of treatment and source of information for clinical policy, but they do have limitations.

• Prevention and treatment of hypertension and target organ disease remain important public health challenges that must be addressed.
Hypertension is defined as systolic blood pressure (SBP) of 140 mm Hg or greater, diastolic blood pressure (DBP) of 90 mm Hg or greater, or taking antihypertensive medication. The objective of identifying and treating high blood pressure is to reduce the risk of cardiovascular disease and associated morbidity and mortality. To that end, it is useful to provide a classification of adult blood pressure for the purpose of identifying high-risk individuals and to provide guidelines for followup and treatment.

The positive relationship between SBP and DBP and cardiovascular risk has long been recognized. This relationship is strong, continuous, graded, consistent, independent, predictive, and etiologically significant for those with and without coronary heart disease. Therefore, although classification of adult blood pressure is somewhat arbitrary, it is useful to clinicians who must make treatment decisions based on a constellation of factors including the actual level of blood pressure. Table 2 provides a classification of blood pressure for adults age 18 and older.

**Table 2**

<table>
<thead>
<tr>
<th>Category</th>
<th>Systolic (mm Hg)</th>
<th>Diastolic (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal†</td>
<td>&lt; 120</td>
<td>&lt; 80</td>
</tr>
<tr>
<td>Normal</td>
<td>&lt; 130</td>
<td>&lt; 85</td>
</tr>
<tr>
<td>High-normal</td>
<td>130-139</td>
<td>85-89</td>
</tr>
<tr>
<td>Hypertension‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>Stage 2</td>
<td>160-179</td>
<td>100-109</td>
</tr>
<tr>
<td>Stage 3</td>
<td>&gt; 180</td>
<td>&gt; 110</td>
</tr>
</tbody>
</table>

- † Optimal blood pressure with respect to cardiovascular risk is below 120/80 mm Hg. However, unusually low readings should be evaluated for clinical significance.
- ‡ Based on the average of two or more readings taken at each of two or more visits after an initial screening.

* Not taking antihypertensive drugs and not acutely ill. When systolic and diastolic blood pressures fall into different categories, the higher category should be selected to classify the individual’s blood pressure status. For example, 160/92 mm Hg should be classified as stage 2 hypertension, and 174/120 mm Hg should be classified as stage 3 hypertension. Isolated systolic hypertension is defined as SBP of 140 mm Hg or greater and DBP below 90 mm Hg and staged appropriately (e.g., 170/82 mm Hg is defined as stage 2 isolated systolic hypertension). In addition to classifying stages of hypertension on the basis of average blood pressure levels, clinicians should specify presence or absence of target organ disease and additional risk factors. This specificity is important for risk classification and treatment (see table 5).
pressure for adults (age 18 and older). These criteria are for individuals who are not taking antihypertensive medication and who have no acute illness. This classification is based on the average of two or more blood pressure readings taken in accordance with the following recommendations at each of two or more visits after an initial screening visit. When SBP and DBP fall into different categories, the higher category should be selected to classify the individual's blood pressure. The classification is slightly modified from the JNC V report in that stage 3 and stage 4 hypertension are now combined because of the relative infrequency of stage 4 hypertension.

**Detection and Confirmation**

Hypertension detection begins with proper blood pressure measurements, which should be obtained at each health care encounter. Repeated blood pressure measurements will determine whether initial elevations persist and require prompt attention or have returned to normal and need only periodic surveillance. Blood pressure should be measured in a standardized fashion using equipment that meets certification criteria. The following techniques are recommended:

- Patients should be seated in a chair with their backs supported and their arms bared and supported at heart level. Patients should refrain from smoking or ingesting caffeine during the 30 minutes preceding the measurement.
- Under special circumstances, measuring blood pressure in the supine and standing positions may be indicated (see chapter 4).
- Measurement should begin after at least 5 minutes of rest.
- The appropriate cuff size must be used to ensure accurate measurement. The bladder within the cuff should encircle at least 80 percent of the arm. Many adults will require a large adult cuff.
- Measurements should be taken preferably with a mercury sphygmomanometer; otherwise, a recently calibrated aneroid manometer or a validated electronic device can be used.
- Both SBP and DBP should be recorded. The first appearance of sound (phase 1) is used to define SBP. The disappearance of sound (phase 5) is used to define DBP.
- Two or more readings separated by 2 minutes should be averaged. If the first two readings differ by more than 5 mm Hg, additional readings should be obtained and averaged.

Clinicians should explain to patients the meaning of their blood pressure readings and advise them of the need for periodic remeasurement. Table 3 provides followup recommendations based on the initial set of blood pressure measurements. More information regarding blood pressure measurement may be found in the American Heart Association's Recommendations for Human Blood Pressure Determination by Sphygmomanometers and the American Society of Hypertension's Recommendations for Routine Blood Pressure Measurement by Indirect Cuff Sphygmomanometry.

**Self-Measurement of Blood Pressure**

Measurement of blood pressure outside the clinician's office may provide valuable information for the initial evaluation of patients with hypertension and for monitoring the response to treatment. Self-measurement has four general advantages: (1) distinguishing sustained hypertension from "white-coat hypertension," a condition noted in patients whose blood pressure is consistently elevated in the physician's office or clinic but normal at other times; (2) assessing response to antihypertensive medication; (3) improving patient adherence to treatment; and (4) potentially reducing costs. The blood pressure of persons with hypertension tends to be higher when measured in the clinic than outside of the office. There is no universally agreed-on upper limit of normal home blood pressure, but readings of
135/85 mm Hg or greater should be considered elevated.45,47,48

Choice of Monitors for Personal Use
Although the mercury sphygmomanometer is still the most accurate device for clinical use, it is generally not practical for home use. Therefore, either validated electronic devices or aneroid sphygmomanometers that have proven to be accurate according to standard testing42,49,50 are recommended for use along with appropriately sized cuffs. Finger monitors are inaccurate.51 Periodically, the accuracy of the patient’s device should be checked by comparing readings with simultaneously recorded auscultatory readings taken with a mercury device. Independent evaluations of the instruments available to patients are published from time to time.52

AMBULATORY BLOOD PRESSURE MONITORING
A variety of commercially available monitors, which are reliable, convenient, easy to use, and accurate, now are available.49,50 These monitors typically are programmed to take readings every 15 to 30 minutes throughout the day and night while patients go about their normal daily activities. The readings can then be downloaded onto a personal computer for analysis. Normal blood pressure values taken by ambulatory measurement (1) are lower than clinic readings while patients are awake (below 135/85 mm Hg); (2) are even lower while patients are asleep (below 120/75 mm Hg); and (3) provide measures of SBP and DBP load.45,47 In the majority of individuals, blood pressure falls by 10 to 20 percent
during the night; this change is more closely related to patterns of sleep and wakefulness than to time of day, as illustrated by the blood pressure rhythm following the inverted cycle of activity in night-shift workers.\textsuperscript{53}

Among persons with hypertension, an extensive and very consistent body of evidence indicates that ambulatory blood pressure correlates more closely than clinic blood pressure with a variety of measures of target organ damage such as left ventricular hypertrophy.\textsuperscript{47} Prospective data relating ambulatory blood pressure to prognosis are limited to two published studies, which suggest that, in patients in whom an elevated clinic pressure is the only abnormality, ambulatory monitoring may identify a group at relatively low risk of morbidity.\textsuperscript{54-56}

Ambulatory blood pressure monitoring is most clinically helpful and most commonly used in patients with suspected “white-coat hypertension,” but it is also helpful in patients with apparent drug resistance, hypotensive symptoms with antihypertensive medications, episodic hypertension, and autonomic dysfunction.\textsuperscript{45} However, this procedure should not be used indiscriminately such as in the routine evaluation of patients with suspected hypertension.

**Medical History**

A medical history should include the following:

- known duration and levels of elevated blood pressure;
- patient history or symptoms of CHD, heart failure, cerebrovascular disease, peripheral vascular disease, renal disease, diabetes mellitus, dyslipidemia, other comorbid conditions, gout, or sexual dysfunction;
- family history of high blood pressure, premature CHD, stroke, diabetes, dyslipidemia, or renal disease;
- symptoms suggesting causes of hypertension;
- history of recent changes in weight, leisure-time physical activity, and smoking or other tobacco use;
- dietary assessment including intake of sodium, alcohol, saturated fat, and caffeine;
- history of all prescribed and over-the-counter medications, herbal remedies, and illicit drugs, some of which may raise blood pressure or interfere with the effectiveness of antihypertensive drugs (see chapter 4);
- results and adverse effects of previous antihypertensive therapy; and
- psychosocial and environmental factors (e.g., family situation, employment status and working conditions, educational level) that may influence hypertension control.

**Evaluation**

Evaluation of patients with documented hypertension has three objectives: (1) to identify known causes of high blood pressure; (2) to assess the presence or absence of target organ damage and cardiovascular disease, the extent of the disease, and the response to therapy; and (3) to identify other cardiovascular risk factors or concomitant disorders that may define prognosis and guide treatment. Data for evaluation are acquired through medical history, physical examination, laboratory tests, and other diagnostic procedures.

**Medical History**

A medical history should include the following:

- known duration and levels of elevated blood pressure;
- patient history or symptoms of CHD, heart failure, cerebrovascular disease, peripheral vascular disease, renal disease, diabetes mellitus, dyslipidemia, other comorbid conditions, gout, or sexual dysfunction;
- family history of high blood pressure, premature CHD, stroke, diabetes, dyslipidemia, or renal disease;
- symptoms suggesting causes of hypertension;
- history of recent changes in weight, leisure-time physical activity, and smoking or other tobacco use;
- dietary assessment including intake of sodium, alcohol, saturated fat, and caffeine;
- history of all prescribed and over-the-counter medications, herbal remedies, and illicit drugs, some of which may raise blood pressure or interfere with the effectiveness of antihypertensive drugs (see chapter 4);
- results and adverse effects of previous antihypertensive therapy; and
- psychosocial and environmental factors (e.g., family situation, employment status and working conditions, educational level) that may influence hypertension control.

**Physical Examination**

The initial physical examination should include the following:

- two or more blood pressure measurements separated by 2 minutes with the patient either supine or seated and after standing for at least 2 minutes in accordance with the recommended techniques mentioned earlier;
- verification in the contralateral arm (if values are different, the higher value should be used);
• measurement of height, weight, and waist circumference (see chapter 3);
• funduscopic examination for hypertensive retinopathy (i.e., arteriolar narrowing, focal arteriolar constrictions, arteriovenous crossing changes, hemorrhages and exudates,
57 disc edema);
• examination of the neck for carotid bruits, distended veins, or an enlarged thyroid gland;
• examination of the heart for abnormalities in rate and rhythm, increased size, precordial heave, clicks, murmurs, and third and fourth heart sounds;
• examination of the lungs for rales and evidence for bronchospasm;
• examination of the abdomen for bruits, enlarged kidneys, masses, and abnormal aortic pulsation;
• examination of the extremities for diminished or absent peripheral arterial pulsations, bruits, and edema; and
• neurological assessment.

Laboratory Tests and Other Diagnostic Procedures

Routine laboratory tests recommended before initiating therapy are tests to determine the presence of target organ damage and other risk factors. These routine tests include urinalysis, complete blood cell count, blood chemistry (potassium, sodium, creatinine, fasting glucose, total cholesterol, and high-density lipoprotein [HDL] cholesterol), and 12-lead electrocardiogram.

Optional tests include creatinine clearance, microalbuminuria, 24-hour urinary protein, blood calcium, uric acid, fasting triglycerides, low-density lipoprotein (LDL) cholesterol, glycosolated hemoglobin, thyroid-stimulating hormone, and limited echocardiography (see chapter 4) (to determine the presence of left ventricular hypertrophy). More complete assessment of cardiac anatomy and function by standard echocardiography, examination of structural alterations in arteries by ultrasonography, measurement of ankle/arm index,
58 and plasma renin activity/urinary sodium determination may be useful in assessing cardiovascular status in selected patients.

Identifiable Causes of Hypertension

Additional diagnostic procedures may be indicated to seek causes of hypertension, particularly in patients (1) whose age, history, physical examination, severity of hypertension, or initial laboratory findings suggest such causes; (2) whose blood pressures are responding poorly to drug therapy; (3) with well-controlled hypertension whose blood pressures begin to increase; (4) with stage 3 hypertension; and (5) with sudden onset of hypertension. For example, labile hypertension or paroxysms of hypertension accompanied by headache, palpitations, pallor, and perspiration suggest pheochromocytoma; abdominal bruits, particularly those that lateralize to the renal areas or have a diastolic component, suggest renovascular disease; abdominal or flank masses may be polycystic kidneys; delayed or absent femoral arterial pulses and decreased blood pressure in the lower extremities may indicate aortic coarctation; and truncal obesity with purple striae suggests Cushing syndrome. Examples of clues from the laboratory tests include unprovoked hypokalemia (primary aldosteronism), hypercalcemia (hyperparathyroidism), and elevated creatinine or abnormal urinalysis (renal parenchymal disease). Appropriate investigations should be conducted when there is a high index of suspicion of an identifiable cause.

Genetics of Hypertension

Blood pressure levels are correlated among family members, a fact attributable to common genetic background, shared environment, or lifestyle habits.
59 High blood pressure appears to be a complex trait that does not follow the classic Mendelian rules of inheritance attributable to a single gene locus; the currently documented exceptions are a few rare forms of hypertension, such as those related to a single mutation involving a chimeric 11-beta-hydroxylase/aldosterone synthase gene.
60 High blood pressure appears to be a polygenic and multifactorial disorder in
which the interaction of several genes with each other and with the environment is important.\textsuperscript{61} Potential candidate genes suggested by recent experimental data include those that affect various components of the renin-angiotensin-aldosterone system, the kallikrein-kinin system, and the sympathetic nervous system.

**Table 4**

<table>
<thead>
<tr>
<th>COMPONENTS OF CARDIOVASCULAR RISK STRATIFICATION IN PATIENTS WITH HYPERTENSION*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Major Risk Factors</strong></td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Dyslipidemia</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Age older than 60 years</td>
</tr>
<tr>
<td>Sex (men and postmenopausal women)</td>
</tr>
<tr>
<td>Family history of cardiovascular disease: women under age 65 or men under age 55</td>
</tr>
<tr>
<td><strong>Target Organ Damage/Clinical Cardiovascular Disease</strong></td>
</tr>
<tr>
<td>Heart diseases</td>
</tr>
<tr>
<td>- Left ventricular hypertrophy</td>
</tr>
<tr>
<td>- Angina/prior myocardial infarction</td>
</tr>
<tr>
<td>- Prior coronary revascularization</td>
</tr>
<tr>
<td>- Heart failure</td>
</tr>
<tr>
<td>Stroke or transient ischemic attack</td>
</tr>
<tr>
<td>Nephropathy</td>
</tr>
<tr>
<td>Peripheral arterial disease</td>
</tr>
<tr>
<td>Retinopathy</td>
</tr>
</tbody>
</table>

* See table 5.

**Risk Stratification**

The risk of cardiovascular disease in patients with hypertension is determined not only by the level of blood pressure but also by the presence or absence of target organ damage or other risk factors such as smoking, dyslipidemia, and diabetes, as shown in table 4. These factors independently modify the risk for subsequent cardiovascular disease, and their presence or absence is determined during the routine evaluation of patients with hypertension (i.e., history, physical examination, laboratory tests). Based on this assessment and the level of blood pressure, the patient’s risk group can be determined, as shown in table 5. This empiric classification stratifies patients with hypertension into risk groups for therapeutic decisions. The World Health Organization Expert Committee on Hypertension Control recently recommended a similar approach.\textsuperscript{62} Obesity and physical inactivity are also predictors of cardiovascular risk and interact with other risk factors, but they are of less significance in the selection of antihypertensive drugs.

**Risk Group A**

Risk group A includes patients with high-normal blood pressure or stage 1, 2, or 3 hypertension who do not have clinical cardiovascular disease, target organ damage, or other risk factors. Persons with stage 1 hypertension in risk group A are candidates for a longer trial (up to 1 year) of vigorous lifestyle modification with vigilant blood pressure monitoring. If goal blood pressure is not achieved, pharmacologic therapy should be added. For those with stage 2 or stage 3 hypertension, drug therapy is warranted.
### Risk Stratification and Treatment*

<table>
<thead>
<tr>
<th>Blood Pressure Stages (mm Hg)</th>
<th>Risk Group A (No Risk Factors No TOD/CCD)†</th>
<th>Risk Group B (At Least 1 Risk Factor, Not Including Diabetes; No TOD/CCD)</th>
<th>Risk Group C (TOD/CCD and/or Diabetes, With or Without Other Risk Factors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-normal (130-139/85-89)</td>
<td>Lifestyle modification</td>
<td>Lifestyle modification</td>
<td>Drug therapy</td>
</tr>
<tr>
<td>Stage 1 (140-159/90-99)</td>
<td>Lifestyle modification (up to 12 months)</td>
<td>Lifestyle modification‡ (up to 6 months)</td>
<td>Drug therapy</td>
</tr>
<tr>
<td>Stages 2 and 3 (&gt;160/&gt;100)</td>
<td>Drug therapy</td>
<td>Drug therapy</td>
<td>Drug therapy</td>
</tr>
</tbody>
</table>

For example, a patient with diabetes and a blood pressure of 142/94 mm Hg plus left ventricular hypertrophy should be classified as having stage 1 hypertension with target organ disease (left ventricular hypertrophy) and with another major risk factor (diabetes). This patient would be categorized as **Stage 1, Risk Group C**, and recommended for immediate initiation of pharmacologic treatment.

* Lifestyle modification should be adjunctive therapy for all patients recommended for pharmacologic therapy.

† TOD/CCD indicates target organ disease/clinical cardiovascular disease (see table 4).
‡ For patients with multiple risk factors, clinicians should consider drugs as initial therapy plus lifestyle modifications.
§ For those with heart failure, renal insufficiency, or diabetes.

---

**Risk Group B**

Risk group B includes patients with hypertension who do not have clinical cardiovascular disease or target organ damage but have one or more of the risk factors shown in table 4 but not diabetes mellitus. This group contains the large majority of patients with high blood pressure. If multiple risk factors are present, clinicians should consider antihypertensive drugs as initial therapy. Lifestyle modification and management of reversible risk factors should be strongly recommended.

**Risk Group C**

Risk group C includes patients with hypertension who have clinically manifest cardiovascular disease or target organ damage, as delineated in table 4. It is the clinical opinion of the JNC VI executive committee that some patients who have high-normal blood pressure as well as renal insufficiency, heart failure, or diabetes mellitus should be considered for prompt pharmacologic therapy. Appropriate lifestyle modifications always should be recommended as adjunct treatment.
This classification (blood pressure stage and risk grouping) is directly linked to treatment and treatment goals as discussed in chapter 3. It provides practicing clinicians with a simple method of identifying risk strata for individual patients (by history, physical examination, and routine laboratory testing) as well as guidelines for treatment of those patients. From these findings, an assessment of absolute risk can be made. Tables, formulas, computer software programs, and World Wide Web sites are available for calculating cardiovascular risk in individual patients by means of data from epidemiologic studies.63-66

**Summary**

- Table 2 provides a classification of blood pressure stages in adults. Stage 3 and stage 4 hypertension are now combined.
- Recommendations for detection, confirmation, and evaluation of high blood pressure remain consistent with those presented in the JNC V report.
- A new definition is proposed for normal blood pressure with self-monitoring and ambulatory blood pressure measurement.
- A discussion of genetics and a discussion of clinical clues to identifiable causes of hypertension have been added.
- New tables listing cardiovascular risk factors and describing risk stratification have been added.


CHAPTER 3

PREVENTION AND TREATMENT OF HIGH BLOOD PRESSURE

POTENTIAL FOR PRIMARY PREVENTION OF HYPERTENSION

Before considering the active treatment of established hypertension, the even greater need for prevention of disease should be recognized. Without primary prevention, the hypertension problem would never be solved and would rely solely on detection of existing high blood pressure. Primary prevention provides an attractive opportunity to interrupt and prevent the continuing costly cycle of managing hypertension and its complications. Primary prevention reflects a number of realities:

- A significant portion of cardiovascular disease occurs in people whose blood pressure is above the optimal level (120/80 mm Hg) but not so high as to be diagnosed or treated as hypertension. A population-wide approach to lowering blood pressure can reduce this considerable burden of risk.

- Active treatment of established hypertension, as carefully as can be provided, poses financial costs and potential adverse effects.

- Most patients with established hypertension do not make sufficient lifestyle changes, do not take medication, or do not take enough medication to achieve control.

- Even if adequately treated according to current standards, patients with hypertension may not lower their risk to that of persons with normal blood pressure.

- Blood pressure rise and high blood pressure are not inevitable consequences of aging.

Therefore, an effective population-wide strategy to prevent blood pressure rise with age and to reduce overall blood pressure levels, even by a little, could affect overall cardiovascular morbidity and mortality as much as or more than that of treating only those with established disease. Such a population-wide approach has been promulgated. It is based on lifestyle modifications that have been shown to prevent or delay the expected rise in blood pressure in susceptible people. A recent study demonstrated that a diet rich in fruits, vegetables, and low-fat dairy foods, and with reduced saturated and total fats, significantly lowers blood pressure (see appendix A).

Lifestyle modifications, discussed later in this chapter as being of value in the treatment of established hypertension, could have an even greater impact on disease prevention and should be recommended to the entire population. Modifications that do not require active participation of individuals but that can be provided to the entire population, such as a reduction in the amount of sodium chloride added to processed foods, may be even more effective.

GOAL

The goal of prevention and management of hypertension is to reduce morbidity and mortality by the least intrusive means possible. This may be accomplished by achieving and maintaining SBP below 140 mm Hg and DBP below 90 mm Hg and lower if tolerated,
while controlling other modifiable risk factors for cardiovascular disease. Treatment to lower levels may be useful, particularly to prevent stroke, to preserve renal function, and to prevent or slow heart failure progression. The goal may be achieved by lifestyle modification, alone or with pharmacologic treatment.

**Lifestyle Modifications**

Lifestyle modifications (table 6) offer the potential for preventing hypertension, have been shown to be effective in lowering blood pressure, and can reduce other cardiovascular risk factors at little cost and with minimal risk. Patients should be strongly encouraged to adopt these lifestyle modifications, particularly if they have additional risk factors for premature cardiovascular disease, such as dyslipidemia or diabetes mellitus. Even when lifestyle modifications alone are not adequate in controlling hypertension, they may reduce the number and dosage of antihypertensive medications needed to manage the condition. Although the difficulty in achieving and maintaining lifestyle changes is recognized, a systematic team approach utilizing health care professionals and community resources when possible can assist in providing the necessary education, support, and followup.

**Weight Reduction**

Excess body weight—body mass index (weight in kilograms divided by height in meters, squared) of 27 or greater—is correlated closely with increased blood pressure. The deposition of excess fat in the upper part of the body (visceral or abdominal), as evidenced by a waist circumference of 34 inches (85 cm) or greater in women or 39 inches (98 cm) or greater in men, also has been associated with the risk for hypertension, dyslipidemia, diabetes, and coronary heart disease mortality.

Weight reduction, of as little as 10 pounds (4.5 kg) reduces blood pressure in a large proportion of overweight persons with hypertension. In overweight patients with hypertension, weight reduction enhances the blood-pressure-lowering effect of concurrent antihypertensive agents and can significantly reduce concomitant cardiovascular risk factors, such as diabetes and dyslipidemia.

Therefore, all patients with hypertension who are above their desirable weight should be placed on an individualized, monitored weight reduction program involving caloric restriction and increased physical activity. Recidivism is common and can be discouraging, but persis-

### Table 6

**Lifestyle Modifications for Hypertension Prevention and Management**

- Lose weight if overweight.
- Limit alcohol intake to no more than 1 oz (30 mL) ethanol (e.g., 24 oz [720 mL] beer, 10 oz [300 mL] wine, or 2 oz [60 mL] 100-proof whiskey) per day or 0.5 oz (15 mL) ethanol per day for women and lighter weight people.
- Increase aerobic physical activity (30 to 45 minutes most days of the week).
- Reduce sodium intake to no more than 100 mmol per day (2.4 g sodium or 6 g sodium chloride).
- Maintain adequate intake of dietary potassium (approximately 90 mmol per day).
- Maintain adequate intake of dietary calcium and magnesium for general health.
- Stop smoking and reduce intake of dietary saturated fat and cholesterol for overall cardiovascular health.
tence may be rewarded by reduction of multiple cardiovascular risk factors and a step-down in antihypertensive drug therapy. Anorectic agents should be used with caution because many can raise blood pressure and some may increase the risk for valvular heart disease and pulmonary hypertension. 

**Moderation of Alcohol Intake**

Excessive alcohol intake is an important risk factor for high blood pressure and is a risk factor for stroke. A detailed history of current alcohol consumption should be elicited from patients. Those who drink beverages containing alcohol should be counseled to limit their daily intake to no more than 1 ounce (30 mL) of ethanol—for example, 24 ounces (720 mL) of beer, 10 ounces (300 mL) of wine, or 2 ounces (60 mL) of 100-proof whiskey. Because women absorb more ethanol than men and lighter weight people are more susceptible than heavier people to the effects of alcohol, these groups should be counseled to limit their intake to no more than 0.5 ounce (15 mL) of ethanol per day. Such amounts do not raise blood pressure and have been associated with a lower risk for CHD. Significant hypertension may develop during abrupt withdrawal from heavy alcohol consumption but recedes a few days after alcohol consumption is reduced.

**Physical Activity**

Regular aerobic physical activity—adequate to achieve at least a moderate level of physical fitness—can enhance weight loss and functional health status and reduce the risk for cardiovascular disease and all-cause mortality. When compared with their more active and fit peers, sedentary individuals with normal blood pressure have a 20- to 50-percent increased risk of developing hypertension.

Blood pressure can be lowered with moderately intense physical activity (40 to 60 percent of maximum oxygen consumption), such as 30 to 45 minutes of brisk walking most days of the week. Most people can safely increase their level of physical activity without an extensive medical evaluation. Patients with cardiac or other serious health problems need a more thorough evaluation, often including a cardiac stress test, and may need referral to a specialist or medically supervised exercise program.

**Moderation of Dietary Sodium**

Sodium, in the form of sodium chloride or table salt, is linked to levels of blood pressure. Individual response of blood pressure to variation in sodium intake differs widely; as groups, African Americans, older people, and patients with hypertension or diabetes are more sensitive to changes in dietary sodium chloride than are others in the general population.

Epidemiologic data demonstrate a positive association between sodium intake and level of blood pressure. Meta-analysis of clinical trials reveals that a reduction of 75 to 100 mmol in sodium intake lowers blood pressure over periods of several weeks to a few years. These effects are greater for older persons and those with elevated pressures. An analysis of 17 published randomized controlled trials involving patients age 45 or older with hypertension found an average decrease of 6.3/2.2 mm Hg with a urinary sodium reduction of 95 mmol per day. Although concern about severe sodium restriction has been raised in one observational study, there is no evidence that lower levels of sodium intake, as achieved in intervention trials, present any safety hazards.

Moreover, a variety of controlled and observational studies suggest that a diet with moderately reduced intake of sodium may be associated with other favorable effects on factors such as ability to reduce the need for antihypertensive medication, reduce diuretic-induced potassium wastage, possibly regress left ventricular hypertrophy, and protect from osteoporosis and renal stones through reduction in urinary calcium excretion.
Seventy-five percent of sodium intake is derived from processed food. Because the average American consumption of sodium is in excess of 150 mmol per day, moderate sodium reduction to a level of no more than 100 mmol per day (approximately 6 grams of sodium chloride or 2.4 grams of sodium per day) is recommended and achievable. With appropriate counseling, patients and their families can learn to read food labels and select foods lower in sodium. Such items are becoming more readily available in supermarkets and restaurants.

**Potassium Intake**

High dietary potassium intake may protect against developing hypertension and improve blood pressure control in patients with hypertension. Inadequate potassium intake may increase blood pressure. Therefore, an adequate intake of potassium (approximately 90 mmol per day), preferably from food sources such as fresh fruits and vegetables, should be maintained. If hypokalemia occurs during diuretic therapy, additional potassium may be needed from potassium-containing salt substitutes, potassium supplements, or potassium-sparing diuretics. These agents must be used with caution in patients susceptible to hyperkalemia, including those with renal insufficiency or those receiving angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers.

**Calcium Intake**

In most epidemiologic studies, low dietary calcium intake is associated with an increased prevalence of hypertension. An increased calcium intake may lower blood pressure in some patients with hypertension, but the overall effect is minimal. Although it is important to maintain an adequate intake of calcium for general health, there is currently no rationale for recommending calcium supplements to lower blood pressure.

**Magnesium Intake**

Although evidence suggests an association between lower dietary magnesium intake and higher blood pressure, no convincing data currently justify recommending an increased magnesium intake in an effort to lower blood pressure.

**Other Dietary Factors**

**Dietary Fats.** Dyslipidemia is a major independent risk factor for coronary artery disease; therefore, dietary therapy and, if necessary, drug therapy for dyslipidemia are an important adjunct to antihypertensive treatment. In randomized controlled studies, diets varying in total fat and proportions of saturated to unsaturated fats have had little, if any, effect on blood pressure. Large amounts of omega-3 fatty acids may lower blood pressure; however, some patients experience abdominal discomfort. One study found no significant effect in preventing hypertension. Caffeine. Caffeine may raise blood pressure acutely. Tolerance to this pressor effect develops rapidly, and no direct relationship between caffeine intake and elevated blood pressure has been found in most epidemiologic surveys.

**Other Factors.** Although recent epidemiologic studies have shown an inverse relationship between dietary protein to blood pressure, no consistent effects have been demonstrated. Furthermore, controlled trials of varying proportions of carbohydrate, garlic, or onion in the diet have demonstrated no consistent effects on blood pressure.

**Relaxation and Biofeedback**

Emotional stress can raise blood pressure acutely. The role of stress management techniques in treating patients with elevated blood pressure is uncertain. Relaxation therapies and biofeedback have been studied in multiple controlled trials with little effect beyond that seen in the control groups. A study in African Americans showed significant decreases in SBP and DBP at 3 months. However, the available literature
does not support the use of relaxation therapies for definitive therapy or prevention of hypertension. One study found no effect of stress management on prevention of hypertension.71

**Tobacco Avoidance for Overall Cardiovascular Risk Reduction**

Cigarette smoking is a powerful risk factor for cardiovascular disease, and avoidance of tobacco in any form is essential. A significant rise in blood pressure accompanies the smoking of each cigarette. Those who continue to smoke may not receive the full degree of protection against cardiovascular disease from antihypertensive therapy.110F The cardiovascular benefits of discontinuing tobacco use can be seen within a year in all age groups.111pr Smoking cessation information is available from voluntary health organizations and Federal agencies.112-115 Smokers must be told repeatedly and unambiguously to stop smoking. The lower amounts of nicotine contained in smoking cessation aids usually will not raise blood pressure; therefore, they may be used with appropriate counseling and behavior interventions.116rE Actions to avoid or minimize weight gain after quitting smoking are often needed.117F

Implementation of lifestyle modifications should not delay the start of an effective antihypertensive drug regimen in those at higher risk (table 5).

**Pharmacologic Treatment**

The decision to initiate pharmacologic treatment requires consideration of several factors: the degree of blood pressure elevation, the presence of target organ damage, and the presence of clinical cardiovascular disease or other risk factors (tables 4 and 5).

**Efficacy**

Reducing blood pressure with drugs clearly decreases cardiovascular morbidity and mortality. Protection has been demonstrated for stroke, coronary events, heart failure, progression of renal disease, progression to more severe hypertension, and all-cause mortality118M,119pr (figure 6).

Among older persons, treatment of hypertension has been associated with an even more significant reduction in CHD120M (figure 7).

These results have been obtained in patients in various countries regardless of sex, age, race, blood pressure level, or socioeconomic status. Therefore, these findings can be generalized with confidence to the entire adult population with high blood pressure.

**Drug Therapy Considerations**

Most antihypertensive drugs currently available in the United States are listed in tables 7 and 8. For most patients, a low dose of the initial drug choice should be used, slowly titrating upward at a schedule dependent on the patient's age, needs, and responses. The optimal formulation should provide 24-hour efficacy with a once-daily dose, with at least 50 percent of the peak effect remaining at the end of the 24 hours. Long-acting formulations that provide 24-hour efficacy are preferred over short-acting agents for many reasons: (1) adherence is better with once-daily dosing; (2) for some agents, fewer tablets incur lower cost; (3) control of hypertension is persistent and smooth rather than intermittent; and (4) protection is provided against whatever risk for sudden death, heart attack, and stroke that is due to the abrupt increase of blood pressure after arising from overnight sleep. Agents with a duration of action beyond 24 hours are attractive because many patients inadvertently miss at least one dose of medication each week. Nonetheless, twice-daily dosing may offer similar control at possibly lower cost.

Newly developed formulations provide additional medication choices. For example, combinations of low doses of two agents from different classes have been shown to provide additional antihypertensive efficacy, thereby minimizing the likelihood of dose-dependent adverse effects (table 8). Very low doses of a diuretic (e.g., 6.25 mg of hydrochlorothiazide) can potentiate the effect of the other agent without producing adverse metabolic effects.121ra Low-dose combinations with an
Figure 6

META-ANALYSIS OF RANDOMIZED, PLACEBO-CONTROLLED CLINICAL TRIALS IN HYPERTENSION ACCORDING TO FIRST-LINE TREATMENT STRATEGY

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Drug Regimen</th>
<th>No. of Trials</th>
<th>Events, Active Treatment/Control</th>
<th>RR (95% CI)</th>
<th>0.4</th>
<th>0.7</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>Diuretics</td>
<td>High</td>
<td>9</td>
<td>88/232</td>
<td>0.49 (0.39-0.62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary Heart Disease</td>
<td>Diuretics</td>
<td>High</td>
<td>11</td>
<td>211/331</td>
<td>0.99 (0.83-1.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>Diuretics</td>
<td>High</td>
<td>9</td>
<td>6/35</td>
<td>0.17 (0.07-0.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Mortality</td>
<td>Diuretics</td>
<td>High</td>
<td>11</td>
<td>224/382</td>
<td>0.88 (0.75-1.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular Mortality</td>
<td>Diuretics</td>
<td>High</td>
<td>11</td>
<td>124/230</td>
<td>0.78 (0.62-0.97)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trials indicate number of trials with at least one endpoint of interest. For these comparisons, the numbers of participants randomized to active therapy and placebo, respectively, were 7,768 and 12,075 for high-dose diuretic therapy; 4,305 and 5,116 for low-dose diuretic therapy, and 6,736 and 12,147 for beta-blocker therapy. Because the Medical Research Council trials included two active arms, the placebo group is included twice in these totals (for diuretic comparison and for beta-blocker comparison). The total number of participants randomized to active therapy and control therapy were 24,294 and 23,926, respectively. RR indicates relative risk; CI, confidence interval; and HDFP, Hypertension Detection and Follow-up Program (5,484 subjects in stepped care and 5,455 in referred care).

The studies assessed the effects of blood pressure reduction on stroke, coronary heart disease, vascular death, and nonvascular death in a total of 12,483 patients over age 60 (SBP difference of 12-14 mm Hg, DBP difference of 5-6 mm Hg), followup 5 years.

SD = standard deviation

Source: Reprinted from MacMahon and Rodgers 120 by courtesy of Marcel Dekker, Inc.
Table 7

**Oral Antihypertensive Drugs**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Trade Name</th>
<th>Usual Dose Range, Total mg/day* (Frequency per Day)</th>
<th>Selected Side Effects and Comments*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Diuretics (partial list)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorthalidone (G)</td>
<td>Hygroton</td>
<td>12.5-50 (1)</td>
<td>Short-term: increases cholesterol and glucose levels; biochemical abnormalities: decreases potassium, sodium, and magnesium levels, increases uric acid and calcium levels; rare blood dyscrasias, photosensitivity, pancreatitis, hypokalemia</td>
</tr>
<tr>
<td>Hydrochlorothiazide (G)</td>
<td>Hydrodiuril, Microzide</td>
<td>12.5-50 (1)</td>
<td></td>
</tr>
<tr>
<td>Indapamide</td>
<td>Lozol</td>
<td>1.25-5 (1)</td>
<td>(Less or no hypercholesterolemia)</td>
</tr>
<tr>
<td>Metolazone</td>
<td>Mykrox</td>
<td>0.5-1.0 (1)</td>
<td></td>
</tr>
<tr>
<td>Esidrix</td>
<td></td>
<td>2.5-10 (1)</td>
<td></td>
</tr>
<tr>
<td><strong>Loop diuretics</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumetanide (G)</td>
<td>Bumex</td>
<td>0.5-4 (2-3)</td>
<td>(Short duration of action, no hypercalcemia)</td>
</tr>
<tr>
<td>Ethacrynic acid</td>
<td>Edecrin</td>
<td>25-100 (2-3)</td>
<td>(Only nonsulfonamide diuretic, ototoxicity)</td>
</tr>
<tr>
<td>Furosemide (G)</td>
<td>Lasix</td>
<td>40-240 (2-3)</td>
<td>(Short duration of action, no hypercalcemia)</td>
</tr>
<tr>
<td>Torsemide</td>
<td>Demadex</td>
<td>5-100 (1-2)</td>
<td></td>
</tr>
<tr>
<td><strong>Potassium-sparing agents</strong></td>
<td></td>
<td></td>
<td>H yperkalemia</td>
</tr>
<tr>
<td>Amiloride hydrochloride (G)</td>
<td>Midamor</td>
<td>5-10 (1)</td>
<td></td>
</tr>
<tr>
<td>Spironolactone (G)</td>
<td>Aldactone</td>
<td>25-100 (1)</td>
<td>(Gynecomastia)</td>
</tr>
<tr>
<td>Triamterene (G)</td>
<td>Dyrenium</td>
<td>25-100 (1)</td>
<td></td>
</tr>
<tr>
<td><strong>Adrenergic inhibitors</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Peripheral agents</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guanadrel</td>
<td>Hylorel</td>
<td>10-75 (2)</td>
<td>(Postural hypotension, diarrea)</td>
</tr>
<tr>
<td>Guanethidine monosulfate</td>
<td>Ismelin</td>
<td>10-150 (1)</td>
<td>(Postural hypotension, diarrea)</td>
</tr>
<tr>
<td>Reserpine (G) † ‡</td>
<td>Serpasil</td>
<td>0.05-0.25 (1)</td>
<td>(Nasal congestion, sedation, depression, activation of peptic ulcer)</td>
</tr>
<tr>
<td><strong>Central alpha-agonists</strong></td>
<td></td>
<td></td>
<td>Sedation, dry mouth, bradycardia, withdrawal, hypertension</td>
</tr>
<tr>
<td>Clonidine hydrochloride (G)</td>
<td>Catapres</td>
<td>0.2-1.2 (2-3)</td>
<td>(More withdrawal)</td>
</tr>
<tr>
<td>Guanabenz acetate (G)</td>
<td>Wytensin</td>
<td>8-32 (2)</td>
<td></td>
</tr>
<tr>
<td>Guanfacine hydrochloride (G)</td>
<td>Tenex</td>
<td>1-3 (1)</td>
<td>(Less withdrawal)</td>
</tr>
<tr>
<td>Methyldopa (G)</td>
<td>Aldomet</td>
<td>500-3,000 (2)</td>
<td>(Hepatic and “autoimmune” disorders)</td>
</tr>
<tr>
<td><strong>Alpha-blockers</strong></td>
<td></td>
<td></td>
<td>Postural hypotension</td>
</tr>
<tr>
<td>Doxazosin mesylate</td>
<td>Cardura</td>
<td>1-16 (1)</td>
<td></td>
</tr>
<tr>
<td>Prazosin hydrochloride (G)</td>
<td>Minipress</td>
<td>2-30 (2-3)</td>
<td></td>
</tr>
<tr>
<td>Terazosin hydrochloride</td>
<td>Hytrin</td>
<td>1-20 (1)</td>
<td></td>
</tr>
<tr>
<td><strong>Beta-blockers</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acebutolol§ ‡</td>
<td>Sectral</td>
<td>200-800 (1)</td>
<td>Bronchospasm, bradycardia, heart failure, may mask insulin-induced hypoglycemia; less serious: impaired peripheral circulation, insomnia, fatigue, decreased exercise tolerance; hyperglycemia (except agents with intrinsic sympathomimetic activity)</td>
</tr>
<tr>
<td>Atenolol (G) † ‡</td>
<td>Tenormin</td>
<td>25-100 (1-2)</td>
<td></td>
</tr>
<tr>
<td>Betaxolol§</td>
<td>Kerlone</td>
<td>5-20 (1)</td>
<td></td>
</tr>
<tr>
<td>Bisoprolol fumarate§</td>
<td>Zebeta</td>
<td>2.5-10 (1)</td>
<td></td>
</tr>
<tr>
<td>Cartelol hydrochloride§</td>
<td>Cartrol</td>
<td>2.5-10 (1)</td>
<td></td>
</tr>
<tr>
<td>Metoprolol tartrate (G) †</td>
<td>Lopressor</td>
<td>50-300 (2)</td>
<td></td>
</tr>
<tr>
<td>Metoprolol succinate§</td>
<td>Toprol-X L</td>
<td>50-300 (1)</td>
<td></td>
</tr>
<tr>
<td>Nadolol (G)</td>
<td>Corgard</td>
<td>40-320 (1)</td>
<td></td>
</tr>
<tr>
<td>Penbutolol sulfatet</td>
<td>Levatol</td>
<td>10-20 (1)</td>
<td></td>
</tr>
<tr>
<td>Pindolol (G) †</td>
<td>Visken</td>
<td>10-60 (2)</td>
<td></td>
</tr>
<tr>
<td>Propranolol hydrochloride (G)</td>
<td>Inderal</td>
<td>40-480 (2)</td>
<td></td>
</tr>
<tr>
<td>Timolol maleate (G)</td>
<td>Blocadren</td>
<td>20-60 (2)</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Trade Name</td>
<td>Usual Dose Range, Total mg/day* (Frequency per Day)</td>
<td>Selected Side Effects and Comments*</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>-----------------------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td><strong>Combined alpha- and beta-blockers</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carvedilol</td>
<td>Coreg</td>
<td>25-50 (2)</td>
<td>Postural hypotension, bronchospasm</td>
</tr>
<tr>
<td>Labetalol hydrochloride (G)</td>
<td>Normodyne, Trandate</td>
<td>200-1,200 (2)</td>
<td></td>
</tr>
<tr>
<td><strong>Direct vasodilators</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydralazine hydrochloride (G)</td>
<td>A presoline</td>
<td>50-300 (2)</td>
<td>Headaches, fluid retention, tachycardia</td>
</tr>
<tr>
<td>Minoxidil (G)</td>
<td>Loniten</td>
<td>5-100 (1)</td>
<td>Hypersensitivity, lupus syndrome</td>
</tr>
<tr>
<td><strong>Calcium antagonists</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nondihydropyridines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diltiazem hydrochloride</td>
<td>Cardizem SR</td>
<td>120-360 (2)</td>
<td>Conduction defects, worsening of systolic dysfunction, gingival hyperplasia</td>
</tr>
<tr>
<td></td>
<td>Cardizem CD</td>
<td>120-360 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dilacor XR, Tiazac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mibefradil dihydrochloride</td>
<td>Postor</td>
<td>50-100 (1)</td>
<td>No worsening of systolic dysfunction; contraindicated with terfenadine (Seldane), astemizole (Hismanal), and cisapride (Propulsid)</td>
</tr>
<tr>
<td>(T-channel calcium antagonist)</td>
<td></td>
<td>Constipation</td>
<td></td>
</tr>
<tr>
<td>Verapamil hydrochloride</td>
<td>Isoptin SR, Calan SR</td>
<td>90-480 (2)</td>
<td>Edema of the ankle, flushing, headache, gingival hypertrophy</td>
</tr>
<tr>
<td></td>
<td>Verelan, Covera HS</td>
<td>120-480 (2)</td>
<td></td>
</tr>
<tr>
<td>Dihydropyridines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amlodipine besylate</td>
<td>Norvasc</td>
<td>2.5-10 (1)</td>
<td>Common: cough; rare: angioedema, hyperkalemia, rash, loss of taste, leukopenia</td>
</tr>
<tr>
<td>Felodipine</td>
<td>Plendil</td>
<td>2.5-20 (1)</td>
<td></td>
</tr>
<tr>
<td>Isradipine</td>
<td>DynaCirc</td>
<td>5-20 (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DynaCirc CR</td>
<td>5-20 (1)</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Cardene SR</td>
<td>60-90 (2)</td>
<td></td>
</tr>
<tr>
<td>Nilvadipine</td>
<td>Procardia X L, Adalat CC</td>
<td>30-120 (1)</td>
<td></td>
</tr>
<tr>
<td>Nisoldipine</td>
<td>Sular</td>
<td>20-60 (1)</td>
<td></td>
</tr>
<tr>
<td><strong>ACE inhibitors</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benazepril hydrochloride</td>
<td>Lotensin</td>
<td>5-40 (1-2)</td>
<td></td>
</tr>
<tr>
<td>Captopril (G)</td>
<td>Capoten</td>
<td>25-150 (2-3)</td>
<td></td>
</tr>
<tr>
<td>Enalapril maleate</td>
<td>Vasotec</td>
<td>5-40 (1-2)</td>
<td></td>
</tr>
<tr>
<td>Fosinopril sodium</td>
<td>Monopril</td>
<td>10-40 (1-2)</td>
<td></td>
</tr>
<tr>
<td>Lisinopril</td>
<td>Primivil, Zestril</td>
<td>5-40 (1)</td>
<td></td>
</tr>
<tr>
<td>Moexipril</td>
<td>Univasc</td>
<td>7.5-15 (1-2)</td>
<td></td>
</tr>
<tr>
<td>Quinapril hydrochloride</td>
<td>Accupril</td>
<td>5-80 (1-2)</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>Altace</td>
<td>1.25-20 (1-2)</td>
<td></td>
</tr>
<tr>
<td>Trandolapril</td>
<td>Movik</td>
<td>1-4 (1)</td>
<td></td>
</tr>
<tr>
<td><strong>Angiotensin II receptor blockers</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losartan potassium</td>
<td>Cozaar</td>
<td>25-100 (1-2)</td>
<td>Angioedema (very rare), hyperkalemia</td>
</tr>
<tr>
<td>Valartan</td>
<td>Diovan</td>
<td>80-320 (1)</td>
<td></td>
</tr>
<tr>
<td>Irbesartan</td>
<td>Avapro</td>
<td>150-300 (1)</td>
<td></td>
</tr>
</tbody>
</table>

* These dosages may vary from those listed in the Physicians’ Desk Reference (51st edition), which may be consulted for additional information. The listing of side effects is not all-inclusive, and side effects are for the class of drugs except where noted for individual drugs (in parentheses); clinicians are urged to refer to the package insert for a more detailed listing.
† (G) indicates generic available.
‡ Has intrinsic sympathomimetic activity.
§ Cardioselective.
** Also acts centrally.
### Table 8

**Combination Drugs for Hypertension**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Beta-adrenergic blockers and diuretics</strong></td>
<td></td>
</tr>
<tr>
<td>Atenolol, 50 or 100 mg/chlorthalidone, 25 mg</td>
<td>Tenoretic</td>
</tr>
<tr>
<td>Bisoprolol fumarate, 2.5, 5, or 10 mg/hydrochlorothiazide, 6.25 mg</td>
<td>Ziac*</td>
</tr>
<tr>
<td>Metoprolol tartrate, 50 or 100 mg/hydrochlorothiazide, 25 or 50 mg</td>
<td>Lopressor H CT</td>
</tr>
<tr>
<td>Nadolol, 40 or 80 mg/bendroflumethiazide, 5 mg</td>
<td>Corzide</td>
</tr>
<tr>
<td>Propranolol hydrochloride, 40 or 80 mg/hydrochlorothiazide, 25 mg</td>
<td>Inderide</td>
</tr>
<tr>
<td>Propranolol hydrochloride (extended release), 80, 120, or 160 mg/hydrochlorothiazide, 50 mg</td>
<td>Inderide LA</td>
</tr>
<tr>
<td>Timolol maleate, 10 mg/hydrochlorothiazide, 25 mg</td>
<td>Timolide</td>
</tr>
<tr>
<td><strong>ACE inhibitors and diuretics</strong></td>
<td></td>
</tr>
<tr>
<td>Benazepril hydrochloride, 5, 10, or 20 mg/hydrochlorothiazide, 6.25, 12.5, or 25 mg</td>
<td>Lotensin H CT</td>
</tr>
<tr>
<td>Captopril, 25 or 50 mg/hydrochlorothiazide, 15 or 25 mg</td>
<td>Capozide*</td>
</tr>
<tr>
<td>Enalapril maleate, 5 or 10 mg/hydrochlorothiazide, 12.5 or 25 mg</td>
<td>Vaseretic</td>
</tr>
<tr>
<td>Lisinopril, 10 or 20 mg/hydrochlorothiazide, 12.5 or 25 mg</td>
<td>Prinaze, Zestoretic</td>
</tr>
<tr>
<td><strong>Angiotensin II receptor antagonists and diuretics</strong></td>
<td></td>
</tr>
<tr>
<td>Losartan potassium, 50 mg/hydrochlorothiazide, 12.5 mg</td>
<td>Hyzaar</td>
</tr>
<tr>
<td><strong>Calcium antagonists and ACE inhibitors</strong></td>
<td></td>
</tr>
<tr>
<td>Amlodipine besylate, 2.5 or 5 mg/benazepril hydrochloride, 10 or 20 mg</td>
<td>Lotrel</td>
</tr>
<tr>
<td>Diltiazem hydrochloride, 180 mg/enalapril maleate, 5 mg</td>
<td>Taca</td>
</tr>
<tr>
<td>Verapamil hydrochloride (extended release), 180 or 240 mg/trandolapril, 1, 2, or 4 mg</td>
<td>Tarka</td>
</tr>
<tr>
<td>Felodipine, 5 mg/enalapril maleate, 5 mg</td>
<td>Lexel</td>
</tr>
<tr>
<td><strong>Other combinations</strong></td>
<td></td>
</tr>
<tr>
<td>Triamterene, 37.5, 50, or 75 mg/hydrochlorothiazide, 25 or 50 mg</td>
<td>Dyazide, Maxide</td>
</tr>
<tr>
<td>Spironolactone, 25 or 50 mg/hydrochlorothiazide, 25 or 50 mg</td>
<td>Aldactazide</td>
</tr>
<tr>
<td>Amiloride hydrochloride, 5 mg/hydrochlorothiazide, 50 mg</td>
<td>Moduretic</td>
</tr>
<tr>
<td>Guanethidine monosulfate, 10 mg/hydrochlorothiazide, 25 mg</td>
<td>Esimil</td>
</tr>
<tr>
<td>Hydralazine hydrochloride, 25, 50, or 100 mg/hydrochlorothiazide, 25 or 50 mg</td>
<td>Apresazide</td>
</tr>
<tr>
<td>Methyldopa, 250 or 500 mg/hydrochlorothiazide, 15, 25, 30, or 50 mg</td>
<td>Aldoril</td>
</tr>
<tr>
<td>Reserpine, 0.125 mg/hydrochlorothiazide, 25 or 50 mg</td>
<td>Hydropres</td>
</tr>
<tr>
<td>Reserpine, 0.10 mg/hydralazine hydrochloride, 25 mg/hydrochlorothiazide, 15 mg</td>
<td>Ser-Ap-Es</td>
</tr>
<tr>
<td>Clonidine hydrochloride, 0.1, 0.2, or 0.3 mg/chlorthalidone, 15 mg</td>
<td>CombiPres</td>
</tr>
<tr>
<td>Methyldopa, 250 mg/chlorthalidone, 150 or 250 mg</td>
<td>Aldochlor</td>
</tr>
<tr>
<td>Reserpine, 0.125 or 0.25 mg/chlorthalidone, 25 or 50 mg</td>
<td>Demi-Regroton</td>
</tr>
<tr>
<td>Reserpine, 0.125 or 0.25 mg/chlorthalidone, 250 or 500 mg</td>
<td>Diureps</td>
</tr>
<tr>
<td>Prazosin hydrochloride, 1, 2, or 5 mg/polythiazide, 0.5 mg</td>
<td>Minizide</td>
</tr>
</tbody>
</table>

*Approved for initial therapy.
ACE inhibitor and a nondihydropyridine calcium antagonist may reduce proteinuria more than either drug alone.\textsuperscript{122} Pr Combinations of a dihydropyridine calcium antagonist and an ACE inhibitor induce less pedal edema than does the calcium antagonist alone.\textsuperscript{123} Ra In some instances, drugs with similar modes of action may provide additive effects, such as metolazone and a loop diuretic in renal failure.

ACE inhibitors have been shown to provide beneficial effects in a variety of hypertension-related processes including heart failure from systolic dysfunction and nephropathy (see chapter 4). The recently introduced angiotensin II receptor blockers produce hemodynamic effects similar to those of ACE inhibitors while avoiding the most common adverse effect, dry cough. However, in the absence of data documenting equal long-term cardiac and renal protection in patients with these conditions, angiotensin II receptor blockers should be used primarily in patients in whom ACE inhibitors are indicated but who are unable to tolerate them.

Some antihypertensive agents—such as direct-acting smooth-muscle vasodilators, central alpha\textsubscript{2}-agonists, and peripheral adrenergic antagonists—are not well suited for initial monotherapy because they produce annoying adverse effects in many patients. Reserpine has a uniquely prolonged therapeutic effect and is better tolerated in low doses (0.05 to 0.10 mg per day); however, patients and their families still should be warned about the possibility of depression. The direct-acting smooth-muscle vasodilators (e.g., hydralazine hydrochloride, minoxidil) often induce reflex sympathetic stimulation of the cardiovascular system and fluid retention.

Immediate-release nifedipine has precipitated ischemic events\textsuperscript{124} Pr and, in large doses, may increase coronary mortality in patients who have had a myocardial infarction.\textsuperscript{125} M Therefore, this agent should be used only with great caution, if at all. There have been inconsistent reports regarding adverse health effects of short-acting or immediate-release formulations of nifedipine, diltiazem hydrochloride, and verapamil hydrochloride.\textsuperscript{126} Pr,\textsuperscript{127} Ra Randomized controlled trials are now in progress with long-acting types and formulations of calcium antagonists approved for treatment of hypertension. In the meantime, specific recommendations are provided in tables 9 and 10 and figure 8.

Special Considerations
Special considerations in the selection of initial therapy include demographic characteristics, concomitant diseases that may be beneficially or adversely affected by the antihypertensive agent chosen (table 9), quality of life, cost, and use of other drugs that may lead to drug interactions (table 11). When choosing a certain drug for its favorable effect on comorbidity, clinicians should be aware that reduction of long-term cardiovascular morbidity and mortality may not have been demonstrated.\textsuperscript{118} M

Demographics. Neither sex nor age usually affects responsiveness to various agents.\textsuperscript{128} M In general, hypertension in African Americans is more responsive to monotherapy with diuretics and calcium antagonists than to beta-blockers or ACE inhibitors.\textsuperscript{129} Ra However, if a beta-blocker or ACE inhibitor is needed for other therapeutic benefits, differences in efficacy usually can be overcome with reduction of salt intake, higher doses of the drug, or addition of a diuretic.

Concomitant Diseases and Therapies. Antihypertensive drugs may worsen some diseases and improve others (table 9). Selection of an antihypertensive agent that also treats a coexisting disease will simplify therapeutic regimens and reduce costs.

Quality of Life. Although antihypertensive drugs may cause adverse effects in some patients (table 7), quality of life is maintained and possibly improved by any of the agents recommended for initial therapy.\textsuperscript{130} Ra
### Considerations for Individualizing Antihypertensive Drug Therapy *

<table>
<thead>
<tr>
<th>Indication</th>
<th>Drug Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compelling Indications Unless Contraindicated</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus (type 1) with proteinuria</td>
<td>ACE I</td>
</tr>
<tr>
<td>Heart failure</td>
<td>ACE I, diuretics</td>
</tr>
<tr>
<td>Isolated systolic hypertension (older patients)</td>
<td>Diuretics (preferred), CA (long-acting DHP)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>Beta-blockers (non-ISA), ACE I (with systolic dysfunction)</td>
</tr>
<tr>
<td>May Have Favorable Effects on Comorbid Conditions†</td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>Beta-blockers, CA</td>
</tr>
<tr>
<td>Atrial tachycardia and fibrillation</td>
<td>Beta-blockers, CA (non-DHP)</td>
</tr>
<tr>
<td>Cyclosporine-induced hypertension (caution with the dose of cyclosporine)</td>
<td>CA</td>
</tr>
<tr>
<td>Diabetes mellitus (types 1 and 2) with proteinuria</td>
<td>ACE I (preferred), CA</td>
</tr>
<tr>
<td>Diabetes mellitus (type 2)</td>
<td>Low-dose diuretics</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>Alpha-blockers</td>
</tr>
<tr>
<td>Essential tremor</td>
<td>Carvedilol, losartan potassium</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Beta-blockers</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>Beta-blockers (non-CS), CA</td>
</tr>
<tr>
<td>Migraine</td>
<td>CA</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>Carvedilol, losartan potassium</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Thiazides</td>
</tr>
<tr>
<td>Preoperative hypertension</td>
<td>Beta-blockers</td>
</tr>
<tr>
<td>Prostatism (BPH)</td>
<td>Alpha-blockers</td>
</tr>
<tr>
<td>Renal insufficiency (caution in renovascular hypertension and creatinine &gt; 265.2 μmol/L [3 mg/dL])</td>
<td>ACE I</td>
</tr>
<tr>
<td>May Have Unfavorable Effects on Comorbid Conditions‡†</td>
<td></td>
</tr>
<tr>
<td>Bronchospastic disease</td>
<td>Beta-blockers‡</td>
</tr>
<tr>
<td>Depression</td>
<td>Beta-blockers, central alpha-agonists, reserpine§</td>
</tr>
<tr>
<td>Diabetes mellitus (types 1 and 2)</td>
<td>Beta-blockers, high-dose diuretics</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>Beta-blockers (non-ISA), diuretics (high-dose)</td>
</tr>
<tr>
<td>Gout</td>
<td>Diuretics</td>
</tr>
<tr>
<td>2° or 3° heart block</td>
<td>Beta-blockers, CA (non-DHP)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Beta-blockers (except carvedilol), CA (except amlodipine besylate, felodipine)</td>
</tr>
<tr>
<td>Liver disease</td>
<td>Labetalol hydrochloride, methylldopa§</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>Beta-blockers</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>ACE I, angiotensin II receptor blockers§</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>Potassium-sparing agents</td>
</tr>
<tr>
<td>Renovascular disease</td>
<td>ACE I, angiotensin II receptor blockers§</td>
</tr>
</tbody>
</table>

* For initial drug therapy recommendations, see figure 8. For references, see chapter 4, Physicians' Desk Reference (51st edition), and Kaplan and Gifford.134 ACE I indicates angiotensin-converting enzyme inhibitors; BPH, benign prostatic hyperplasia; CA, calcium antagonists; DHP, dihydropyridine; ISA, intrinsic sympathomimetic activity; MI, myocardial infarction; and non-CS, noncardioselective.

† Conditions and drugs are listed in alphabetical order.

‡ These drugs may be listed with special monitoring unless contraindicated.

§ Contraindicated.
### Parenteral Drugs for Treatment of Hypertensive Emergencies*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Onset of Action</th>
<th>Duration of Action</th>
<th>Adverse Effects:</th>
<th>Special Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vasodilators</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium nitroprusside</td>
<td>0.25-10 μg/kg per min as IV infusion (maximal dose for 10 min only)</td>
<td>Immediate 1-2 min</td>
<td>Nausea, vomiting, muscle twitching, sweating, thiocyanate and cyanide intoxication</td>
<td>Most hypertensive emergencies; caution with high intracranial pressure or azotemia</td>
<td></td>
</tr>
<tr>
<td>Nifedipine hydrochloride</td>
<td>5-15 mg/h IV</td>
<td>5-10 min</td>
<td>1-4 h</td>
<td>Tachycardia, headache, flushing, local phlebitis</td>
<td>Most hypertensive emergencies except acute heart failure; caution with coronary ischemia</td>
</tr>
<tr>
<td>Fentolopamine mesylate</td>
<td>0.1-0.3 μg/kg per min as IV infusion</td>
<td>&lt;5 min</td>
<td>30 min</td>
<td>Tachycardia, headache, nausea, flushing</td>
<td>Most hypertensive emergencies; caution with glaucoma</td>
</tr>
<tr>
<td>Nitroglycerin</td>
<td>5-100 μg/min as IV infusion</td>
<td>2-5 min</td>
<td>3-5 min</td>
<td>Headache, vomiting, methemoglobinemia, tolerance with prolonged use</td>
<td>Coronary ischemia</td>
</tr>
<tr>
<td>Enalaprilat</td>
<td>1.25-5 mg every 6 h IV</td>
<td>15-30 min</td>
<td>6 h</td>
<td>Precipitous fall in pressure in high-renin states; response variable</td>
<td>Acute left ventricular failure; avoid in acute myocardial infarction</td>
</tr>
<tr>
<td>Hydralazine hydrochloride</td>
<td>10-20 mg IV</td>
<td>10-20 min</td>
<td>3-6 h</td>
<td>Tachycardia, flushing, headache, vomiting, aggravation of angina</td>
<td>Edampsia</td>
</tr>
<tr>
<td>Diazoxide</td>
<td>50-100 mg IV bolus repeated, or 15-30 mg/min infusion</td>
<td>2-4 min</td>
<td>6-12 h</td>
<td>Nausea, flushing, tachycardia, chest pain</td>
<td>Now obsolete; when no intensive monitoring available</td>
</tr>
<tr>
<td><strong>Adrenergic inhibitors</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labetalol hydrochloride</td>
<td>20-80 mg IV bolus every 10 min 0.5-2.0 mg/min IV infusion</td>
<td>5-10 min</td>
<td>3-6 h</td>
<td>Vomiting, scalp tingling, burning in throat, dizziness, nausea, heart block, orthostatic hypotension</td>
<td>Most hypertensive emergencies except acute heart failure</td>
</tr>
<tr>
<td>Esmolol hydrochloride</td>
<td>250-500 μg/kg/min for 1 min, then 50-100 μg/kg/min for 4 min; may repeat sequence</td>
<td>1-2 min</td>
<td>10-20 min</td>
<td>Hypotension, nausea</td>
<td>Aortic dissection, perioperative</td>
</tr>
<tr>
<td>Phentolamine</td>
<td>5-15 mg IV</td>
<td>1-2 min</td>
<td>3-10 min</td>
<td>Tachycardia, flushing, headache</td>
<td>Catecholamine excess</td>
</tr>
</tbody>
</table>

* These doses may vary from those in the Physicians' Desk Reference (51st edition).
† IV indicates intravenous; IM, intramuscular.
‡ Hypotension may occur with all agents.
§ Require special delivery system.
Figure 8

**Algorithm for the Treatment of Hypertension**

1. **Begin or Continue Lifestyle Modifications**

2. **Not at Goal Blood Pressure** (<140/90 mm Hg)
   - Lower goals for patients with diabetes or renal disease (see chapter 4)

3. **Initial Drug Choices**
   - **Uncomplicated Hypertension**
     - Diuretics
     - Beta-blockers
   - **Specific Indications for the Following Drugs** (see table 9)
     - ACE inhibitors
     - Angiotensin II receptor blockers
     - Alpha-blockers
     - Alpha-beta-blockers
     - Beta-blockers
     - Calcium antagonists
     - Diuretics
   - Compelling Indications†
     - Diabetes mellitus (type 1) with proteinuria
     - Heart failure
     - Isolated systolic hypertension (older persons)
     - Myocardial infarction
     - Beta-blockers (non-ISA)
     - ACE inhibitors (with systolic dysfunction)
   - *Start with a low dose of a long-acting once-daily drug, and **titrate dose.**
   - *Low-dose combinations may be appropriate.

4. **Not at Goal Blood Pressure**
   - No response or troublesome side effects
   - Inadequate response but well tolerated
     - Substitute another drug from a different class.
     - Add a second agent from a different class (diuretic if not already used).

5. **Not at Goal Blood Pressure**
   - Continue adding agents from other classes.
   - Consider referral to a hypertension specialist.

---

*Unless contraindicated. ACE indicates angiotensin-converting enzyme; ISA, intrinsic sympathomimetic activity.
†Based on randomized controlled trials (see chapters 3 and 4).
Table 11

**SELECTED DRUG INTERACTIONS WITH ANTIHYPERTENSIVE THERAPY**

<table>
<thead>
<tr>
<th>Class of Agent</th>
<th>Increase Efficacy</th>
<th>Decrease Efficacy</th>
<th>Effect on Other Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Diuretics</strong></td>
<td>• Diuretics that act at different sites in the nephron (e.g., furosemide + thiazides)</td>
<td>• Resin-binding agents</td>
<td>• Diuretics raise serum lithium levels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NSAIDs</td>
<td>• Potassium-sparing agents may exacerbate hyperkalemia due to ACE inhibitors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Steroids</td>
<td>• Propranolol hydrochloride induces hepatic enzymes to increase clearance of drugs with similar metabolic pathways.</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>• Cimetidine (hepatically metabolized beta-blockers)</td>
<td>• NSAIDs</td>
<td>• Beta-blockers may mask and prolong insulin-induced hypoglycemia.</td>
</tr>
<tr>
<td></td>
<td>• Quinidine (hepatically metabolized beta-blockers)</td>
<td>• Withdrawal of clonidine</td>
<td>• Heart block may occur with nondihydropyridine calcium antagonists.</td>
</tr>
<tr>
<td></td>
<td>• Food (hepatically metabolized beta-blockers)</td>
<td>• Agents that induce hepatic enzymes, including rifampin and phenobarbital</td>
<td>• Sympathomimetics cause unopposed alpha-adrenoceptor-mediated vasocconstriction.</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>• Chlorpromazine or clozapine</td>
<td>• Antacids</td>
<td>• Beta-blockers increase angina-inducing potential of cocaine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Food decreases absorption (moexipril)</td>
<td>• ACE inhibitors may raise serum lithium levels.</td>
</tr>
<tr>
<td>Calcium antagonists</td>
<td>• Grapefruit juice (some dihydropyridines)</td>
<td>• Agents that induce hepatic enzymes, including rifampin and phenobarbital</td>
<td>• ACE inhibitors may exacerbate hyperkalemic effect of potassium-sparing diuretics.</td>
</tr>
<tr>
<td></td>
<td>• Cimetidine or ranitidine (hepatically metabolized calcium antagonists)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha-blockers</td>
<td>• Tricyclic antidepressants (and probably phenothiazines)</td>
<td>• Cyclosporine levels increase with diltiazem hydrochloride, verapamil hydrochloride, mibebradil dihydropyridine, or nicardipine hydrochloride (but not felodipine, isradipine, or nifedipine).</td>
<td></td>
</tr>
<tr>
<td>Central alpha-agonists and peripheral neuronal blockers</td>
<td>• Monoamine oxidase inhibitors</td>
<td>• Agents that induce hepatic enzymes, including rifampin and phenobarbital</td>
<td>• Nondihydropyridines increase levels of other drugs metabolized by the same hepatic enzyme system, including digoxin, quinidine, sulfonamides, and theophylline.</td>
</tr>
<tr>
<td></td>
<td>• Sympathomimetics or phenothiazines antagonize guanethidine monosulfate or guanadrel sulfate</td>
<td></td>
<td>• Verapamil hydrochloride may lower serum lithium levels.</td>
</tr>
<tr>
<td></td>
<td>• Iron salts may reduce methyl dopa absorption</td>
<td>• Tricyclic antidepressants and probably phenothiazines</td>
<td>• Methyl dopa may increase serum lithium levels.</td>
</tr>
</tbody>
</table>

* For initial drug therapy recommendations, see figure 8. See also Physicians' Desk Reference (51st edition) and Cardiovascular Pharmacotherapeutics (New York: McGraw Hill), 1997. NSAIDs indicate nonsteroidal anti-inflammatory drugs; ACE, angiotensin-converting enzyme.

† This is a clinically and economically beneficial drug-drug interaction because it both retards progression of accelerated atherosclerosis in heart transplant recipients and reduces the required daily dose of cyclosporine.
Physiological and Biochemical Measurements. Some clinicians have found certain physiological and biochemical measurements (e.g., body weight, heart rate, plasma renin activity, hemodynamic measurements) to be helpful in choosing specific therapy.

Economic Considerations. The cost of therapy may be a barrier to controlling high blood pressure and should be an important consideration in selecting antihypertensive medication. Generic formulations are acceptable. Nongeneric newer drugs are usually more expensive than diuretics or beta-blockers. If newer agents eventually prove to be equally effective, then cost should be considered in choosing them for initial therapy; if they prove to be more effective, then cost should be a secondary consideration. Treatment costs include not only the price of drugs but also the expense of routine or special laboratory tests, supplemental therapies, office visits, and time lost from work for visits to physicians' offices. The costs of medications may be reduced by using combination tablets and generic formulations. Patients should be advised to check prices at different sources. Some larger tablets can be divided, saving money when larger doses cost little more than smaller doses. Some sustained-release formulations should not be divided because cutting the tablet eliminates the sustained-release function.

Managed Care. Because high blood pressure is so common, its management requires a major commitment from clinicians and managed care organizations. This commitment will need to expand even further because the majority of patients with hypertension do not have adequately controlled blood pressure (see chapter 1) and additional demands will develop from the projected increase in numbers of persons with hypertension due to the aging of the population. However, the cost of managing hypertension is lower overall than the sum of direct and indirect costs that may be avoided by reducing hypertension-associated heart disease, stroke, and renal failure, especially because these adverse events often lead to expensive hospitalizations, surgical procedures, and high-cost technologies. Randomized controlled trials have demonstrated that these reductions occur in a relatively short time and are sustained for years.

Managed care programs offer the opportunity for a coordinated approach to care, using various health care professionals and featuring an appropriate frequency of office visits, short waiting times, supportive patient counseling, and controlled formularies. The outcomes of the management of hypertension will need to be monitored, in keeping with the requirements of organizations that monitor quality, such as the Health Plan Employer Data and Information Set (HEDIS). These outcomes may be divided into three categories: immediate (e.g., blood pressure levels, percentage of adherence to therapy), intermediate (e.g., cardiac or renal function, health resource utilization), and long-term (e.g., morbidity and mortality, cost-effectiveness).

Hypertension specialists may play an important role in providing more cost-effective management of high blood pressure by adapting national guidelines for local implementation, providing guidance for new drugs and diagnostic methods, and managing patients with identifiable causes of hypertension, resistance to therapy, or complex concomitant conditions.

Drug Interactions. As shown in table 11, some drug interactions may be helpful. For example, diuretics that act on different sites in the nephron, such as furosemide and thiazides, increase natriuresis and diuresis, and certain calcium antagonists reduce the required amount of cyclosporine. Other interactions are deleterious: nonsteroidal anti-inflammatory drugs (NSAIDs) may blunt the action of diuretics, beta-blockers, and ACE inhibitors.

Dosage and Followup Therapy for most patients (uncomplicated hypertension, stages 1 and 2) should begin with the lowest dosage listed in table 7 to prevent
adverse effects of too great or too abrupt a reduction in blood pressure. If blood pressure remains uncontrolled after 1 to 2 months, the next dosage level should be prescribed. It may take months to control hypertension adequately while avoiding adverse effects of therapy. Most antihypertensive medications can be given once daily, and this should be the goal to improve patient adherence. Home or office blood pressure measurement in the early morning before patients have taken their daily dose is useful to ensure adequate modulation of the surge in blood pressure after arising. Measurements in the late afternoon or evening help monitor control across the day. Treatment goals based on out-of-office measurements should be lower than those based on office recordings (see chapter 2).

Initial Drug Therapy
When the decision has been made to begin antihypertensive therapy (table 5) and if there are no indications for another type of drug, a diuretic or beta-blocker should be chosen because numerous randomized controlled trials have shown a reduction in morbidity and mortality with these agents (figures 6 and 7).

As shown in table 9 and figure 8, there are compelling indications for specific agents in certain clinical conditions, based on outcomes data from RCTs. In other situations where outcomes data are not yet available, there are indications for other agents and the choice should be individualized, using the agent that most closely fits the patient’s needs.

If the response to the initial drug choice is inadequate after reaching the full dose, two options for subsequent therapy should be considered (see figure 8 for treatment algorithm):

- If the patient is tolerating the first choice well, add a second drug from another class.
- If the patient is having significant adverse effects or no response, substitute an agent from another class.

If a diuretic is not chosen as the first drug, it is usually indicated as a second-step agent because its addition will enhance the effects of other agents. If addition of a second agent controls blood pressure satisfactorily, an attempt to withdraw the first agent may be considered.

Before proceeding to each successive treatment step, clinicians should consider possible reasons for lack of responsiveness to therapy, including those listed in table 12.

High-Risk Patients
Although similar general approaches are advocated for all patients with hypertension, modifications may be needed for those with stage 3 hypertension, those in risk group C, or those at especially high risk for a coronary event or stroke (table 5). Drug therapy should begin with minimal delay. Although some patients may respond adequately to a single drug, it is often necessary to add a second or third agent after a short interval if control is not achieved. The intervals between changes in the regimen should be decreased, and the maximum dose of some drugs may be increased. In some patients, it may be necessary to start treatment with more than one agent. Patients with average SBP of 200 mm Hg or greater and average DBP of 120 mm Hg or greater require more immediate therapy and, if symptomatic target organ damage is present, may require hospitalization.

Step-Down Therapy
An effort to decrease the dosage and number of antihypertensive drugs should be considered after hypertension has been controlled effectively for at least 1 year. The reduction should be made in a deliberate, slow, and progressive manner. Step-down therapy is more often successful in patients who also are making lifestyle modifications. Patients whose drugs have been discontinued should have scheduled followup visits because blood pressure usually rises again to hypertensive levels, sometimes months or years after discontinuation, especially in the absence of sustained improvements in lifestyle.
## Causes of Inadequate Responsiveness to Therapy

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pseudoresistance</strong></td>
<td>&quot;White-coat hypertension&quot; or office elevations</td>
</tr>
<tr>
<td></td>
<td>Pseudohypertension in older patients</td>
</tr>
<tr>
<td></td>
<td>Use of regular cuff on very obese arm</td>
</tr>
<tr>
<td><strong>Nonadherence to therapy</strong></td>
<td>(See table 13)</td>
</tr>
<tr>
<td><strong>Volume overload</strong></td>
<td>Excess salt intake</td>
</tr>
<tr>
<td></td>
<td>Progressive renal damage (nephrosclerosis)</td>
</tr>
<tr>
<td></td>
<td>Fluid retention from reduction of blood pressure</td>
</tr>
<tr>
<td></td>
<td>Inadequate diuretic therapy</td>
</tr>
<tr>
<td><strong>Drug-related causes</strong></td>
<td>Doses too low</td>
</tr>
<tr>
<td></td>
<td>Wrong type of diuretic</td>
</tr>
<tr>
<td></td>
<td>Inappropriate combinations</td>
</tr>
<tr>
<td></td>
<td>Rapid inactivation (e.g., hydralazine)</td>
</tr>
<tr>
<td>Drug actions and interactions</td>
<td>Sympathomimetics</td>
</tr>
<tr>
<td></td>
<td>Nasal decongestants</td>
</tr>
<tr>
<td></td>
<td>Appetite suppressants</td>
</tr>
<tr>
<td></td>
<td>Cocaine and other illicit drugs</td>
</tr>
<tr>
<td></td>
<td>Caffeine</td>
</tr>
<tr>
<td></td>
<td>Oral contraceptives</td>
</tr>
<tr>
<td></td>
<td>Adrenal steroids</td>
</tr>
<tr>
<td></td>
<td>Licorice (as may be found in chewing tobacco)</td>
</tr>
<tr>
<td></td>
<td>Cyclosporine, tacrolimus</td>
</tr>
<tr>
<td></td>
<td>Erythropoietin</td>
</tr>
<tr>
<td></td>
<td>Antidepressants</td>
</tr>
<tr>
<td></td>
<td>Nonsteroidal anti-inflammatory drugs</td>
</tr>
</tbody>
</table>

| **Associated conditions**       | Smoking                                                                                  |
|                                 | Increasing obesity                                                                       |
|                                 | Sleep apnea                                                                              |
|                                 | Insulin resistance/hyperinsulinemia                                                      |
|                                 | Ethanol intake of more than 1 oz (30 mL) per day                                         |
|                                 | Anxiety-induced hyperventilation or panic attacks                                        |
|                                 | Chronic pain                                                                            |
|                                 | Intense vasoconstriction (arteritis)                                                     |
|                                 | Organic brain syndrome (e.g., memory deficit)                                            |

| **Identifiable causes of hypertension** | (See chapter 2)                                                                 |

(See chapter 2)
**J-Curve Hypothesis**

Concerns have been raised that lowering DBP too much may increase the risk for coronary events by lowering diastolic perfusion pressure in the coronary circulation—the so-called J-curve hypothesis.136 The J-curve also has been detected in the placebo group of clinical trials of older persons with hypertension.137 The J-curve concern may be more relevant to patients with both hypertension and preexisting coronary disease136 and to those with pulse pressure greater than 60 mm Hg.139 On the other hand, data support a progressive reduction in both cerebrovascular disease138 and renal disease139 with even greater reductions in blood pressure. All available evidence supports the value of the reduction of DBP and SBP at all ages to the levels achieved in clinical trials—usually DBP to below 90 mm Hg and SBP to below 140 mm Hg in patients with isolated systolic hypertension.140 In trials of persons with isolated systolic hypertension, no increase in cardiovascular morbidity and mortality was observed, despite further reductions of DBP.

**Considerations for Adherence to Therapy**

Poor adherence to antihypertensive therapy remains a major therapeutic challenge143 contributing to the lack of adequate control in more than two-thirds of patients with hypertension (see chapter 1). As attempts to improve adherence are made, patients have the right and responsibility to be active and well-informed participants in their own care and to achieve maximal physical and emotional well-being. Health care professionals have the responsibility to provide patients with complete and accurate information about their health status, allowing patients the opportunity to participate in their care and to achieve goal blood pressure.

**Follow up Visits**

Achieving and maintaining target blood pressure often requires continuing encouragement for lifestyle modification and medication adjustment. Most patients should be seen within 1 to 2 months after the initiation of therapy to determine the adequacy of hypertension control, the degree of patient adherence, and the presence of adverse effects. Associated medical problems—including target organ damage, other major risk factors, and laboratory test abnormalities—also play a part in determining the frequency of patient followup. Visits to other members of the health care team may provide opportunities for more frequent followup. Once blood pressure is stabilized, followup at 3- to 6-month intervals (depending on patient status) is generally appropriate. In some patients, particularly older persons and those with orthostatic symptoms, monitoring should include blood pressure measurement in the seated position and, to recognize postural hypotension, after standing quietly for 2 to 5 minutes.

**Strategies for Improving Adherence to Therapy and Control of High Blood Pressure**

Various strategies may improve adherence significantly (table 13). The choice and application of specific strategies depend on individual patient characteristics, and health care providers are not expected to apply all of them at any one time or to all patients. In particular, pharmacists should be encouraged to monitor patients' use of medications, to provide information about potential adverse effects, and to avoid drug interactions. Nurse-managed clinics offer attractive opportunities to improve adherence and outcomes.37 The services of other members of the health care team, such as those who provide counseling in nutrition or exercise, should be used.

**Resistant Hypertension**

Hypertension should be considered resistant if blood pressure cannot be reduced to below 140/90 mm Hg in patients who are adhering to an adequate and appropriate triple-drug regimen that includes a diuretic, with all three drugs prescribed in near maximal doses. For older patients with isolated systolic hypertension, resistance is
Be aware of signs of patient nonadherence to antihypertensive therapy.

Establish the goal of therapy: to reduce blood pressure to nonhypertensive levels with minimal or no adverse effects.

Educate patients about the disease, and involve them and their families in its treatment. Have them measure blood pressure at home.

Maintain contact with patients; consider telecommunication.

Keep care inexpensive and simple.

Encourage lifestyle modifications.

Integrate pill-taking into routine activities of daily living.

Prescribe medications according to pharmacologic principles, favoring long-acting formulations.

Be willing to stop unsuccessful therapy and try a different approach.

Anticipate adverse effects, and adjust therapy to prevent, minimize, or ameliorate side effects.

Continue to add effective and tolerated drugs, stepwise, in sufficient doses to achieve the goal of therapy.

Encourage a positive attitude about achieving therapeutic goals.

Consider using nurse case management.

defined as failure of an adequate triple-drug regimen to reduce SBP to below 160 mm Hg.

Of the various causes of true resistance listed in table 12, one of the most common is volume overload due to inadequate diuretic therapy. Frequently, a cause for resistance can be recognized and overcome. However, if goal blood pressure cannot be achieved without intolerable adverse effects, even suboptimal reduction of blood pressure contributes to decreased morbidity and mortality. Patients who have resistant hypertension or who are unable to tolerate antihypertensive therapy may benefit from referral to a hypertension specialist.

Hypertensive emergencies are those rare situations that require immediate blood pressure reduction (not necessarily to normal ranges) to prevent or limit target organ damage. Examples include hypertensive encephalopathy, intracranial hemorrhage, unstable angina pectoris, acute myocardial infarction, acute left ventricular failure with pulmonary edema, dissecting aortic aneurysm, or eclampsia. Hypertensive urgencies are those situations in which it is desirable to reduce blood pressure within a few hours. Examples include upper levels of stage 3 hypertension, hypertension with optic disk edema,
progressive target organ complications, and severe perioperative hypertension. Elevated blood pressure alone, in the absence of symptoms or new or progressive target organ damage, rarely requires emergency therapy.

Parenteral drugs for hypertensive emergencies are listed in Table 10. Most hypertensive emergencies are treated initially with parenteral administration of an appropriate agent. Hypertensive urgencies can be managed with oral doses of drugs with relatively fast onset of action. The choices include loop diuretics, beta-blockers, ACE inhibitors, alpha₂-agonists, or calcium antagonists.

The initial goal of therapy in hypertensive emergencies is to reduce mean arterial blood pressure by no more than 25 percent (within minutes to 2 hours), then toward 160/100 mm Hg within 2 to 6 hours, avoiding excessive falls in pressure that may precipitate renal, cerebral, or coronary ischemia. Although sublingual administration of fast-acting nifedipine has been widely used for this purpose, several serious adverse effects have been reported with its use and the inability to control the rate or degree of fall in blood pressure makes this agent unacceptable. The routine use of sublingual nifedipine whenever blood pressure rises beyond a predetermined level in postoperative or nursing home patients is also not appropriate. Rather, the proximate causes of the elevated blood pressure, such as pain or a distended urinary bladder, should be addressed. Blood pressure should be monitored over 15- to 30-minute intervals; if it remains greater than 180/120 mm Hg, one of the previously mentioned oral agents may be given. If such high levels of blood pressure are frequent, adequate doses of long-acting agents should be provided.

**Summary**

- Modifying lifestyles in populations can have a major protective effect against high blood pressure and cardiovascular disease.
- Lowering blood pressure decreases deaths from stroke, coronary events, and heart failure; slows progression of renal failure; prevents progression to more severe hypertension; and reduces all-cause mortality.
- A diuretic and/or a beta-blocker should be chosen as initial therapy unless there are compelling or specific indications for another drug.
- Management strategies can improve adherence through the use of multidisciplinary teams.
- The reductions in cardiovascular events demonstrated in randomized controlled trials have important implications for managed care organizations.
- Strategies for managing hypertensive emergencies and urgencies are described.
CHAPTER 4
SPECIAL POPULATIONS AND SITUATIONS

HYPERTENSION IN RACIAL AND ETHNIC MINORITIES

The United States is a diverse nation composed of individuals from many cultures. The 1990 census reported that the U.S. population was 0.8 percent American Indians, Aleuts, and Inuits; 2.9 percent Asians and Pacific Islanders; 9.0 percent persons of Hispanic origin; 12.1 percent African Americans; and 80.3 percent white.146 (These self-reported categories are not mutually exclusive; thus, the total is greater than 100 percent.) In the past decade, the country has experienced a marked increase in minority populations and the number of immigrants. This trend is expected to continue.

As immigrant populations acculturate, their risk for cardiovascular disease changes.147 For example, American Indians have the same prevalence as, or a higher prevalence than, the general population; among Hispanics, blood pressure is generally the same as or lower than that of non-Hispanic whites, despite a high prevalence of obesity and type 2 diabetes mellitus. It also appears that South Asians are more responsive to various antihypertensive medications than whites.149 For example, Hispanic Americans have higher rates of stage 3 hypertension than whites, causing a greater burden of hypertension complications.14 Pr,24 This earlier onset, higher prevalence, and greater rate of stage 3 hypertension in African Americans is accompanied by an 80-percent higher stroke mortality rate, a 50-percent higher heart disease mortality rate, and a 320-percent greater rate of hypertension-related end-stage renal disease than seen in the general population.154,155 Available evidence indicates that, compared with whites, African Americans receiving adequate treatment will achieve similar overall declines in blood pressure and may experience a lower incidence of cardiovascular disease.156,157 However, African Americans often do not receive treatment until blood pressure has been elevated a long time and target organ damage is present. This also may account for the higher incidence of hypertension-related morbidity and mortality in the African American population, including end-stage renal disease.155

Because of the high prevalence of cardiovascular risk factors in African Americans—such as obesity, cigarette smoking, and type 2 diabetes—as well as increased responsiveness to reduced salt intake, lifestyle modifications are particularly important.
In African Americans, as well as in whites, diuretics have been proven in controlled trials to reduce hypertensive morbidity and mortality; thus, diuretics should be the agent of first choice in the absence of conditions that prohibit their use. Calcium antagonists and alpha-beta-blockers are also effective in lowering blood pressure.  

Because of their greater prevalence of stage 3 hypertension, many African American patients require multidrug therapy. Every effort should be made to achieve a goal blood pressure of below 140/90 mm Hg. In patients with renal insufficiency, recent data suggest that reducing blood pressure to an even lower level may be beneficial (see discussion of renal disease in this chapter).

**Hypertension in Children and Adolescents**

The fifth Korotkoff sound is now used to define DBP for all ages. Definitions of hypertension take into account age and height by sex. Blood pressure at the 95th percentile or greater is considered elevated (table 14). Clinicians should be alert to the possibility of identifiable causes of hypertension in younger children. Lifestyle interventions should be recommended, with pharmacologic therapy instituted for higher levels of blood pressure or if there is insufficient response to lifestyle modifications. Although the recommendations for choice of drugs are similar in children and adults, dosages of antihypertensive medication should be smaller and adjusted very carefully for children. ACE inhibitors and angiotensin II receptor blockers should not be used in pregnant or sexually active girls.

Uncomplicated elevated blood pressure alone should not be a reason to restrict asymptomatic children from participating in physical activities, particularly because exercise may lower blood pressure and prevent hypertension. Use of anabolic steroid hormones for the purpose of bodybuilding should be strongly discouraged. Efforts should be made to discover other risk factors (e.g., smoking) in children, and interventions should be made if they are present. Detailed recommendations regarding hypertension in children and adolescents can be found in the 1996 report by the NHBPEP Working Group on Hypertension Control in Children and Adolescents.

**Hypertension in Women**

Large, long-term clinical trials of antihypertensive treatment have included both men and women and have not demonstrated clinically significant sex differences in blood pressure response and outcome. Recent trials of older persons support a similar approach to hypertension management in men and women.

**Hypertension Associated With Oral Contraceptives**

Women taking oral contraceptives experience a small but detectable increase in both SBP and DBP, usually within the normal range. Hypertension has been reported to be two to three times more common in women taking oral contraceptives, especially in obese and older women, than in those not taking oral contraceptives. Women age 35 and older who smoke cigarettes should be strongly counseled to quit; if they continue to smoke, they should be discouraged from using oral contraceptives.

If hypertension develops in women taking oral contraceptives, it is advisable to stop their use. Blood pressure will normalize in most cases within a few months. If high blood pressure persists, if the risks for pregnancy are considered to be greater than the risks for hypertension, and if other contraceptive methods are not suitable,
then oral contraceptives may have to be continued and therapy for hypertension begun. A prudent approach to the use of oral contraceptives is to prescribe no more than a 6-month supply at a time in order to measure blood pressure on a semiannual basis.

**Hypertension in Pregnancy**

Chronic hypertension is high blood pressure that is present and observable before pregnancy or that is diagnosed before the 20th week of gestation. The goal of treatment for women with chronic hypertension in pregnancy is to minimize the short-term risks of elevated blood pressure to the mother while avoiding therapy that compromises the well-being of the fetus. If taken before pregnancy, diuretics and most other antihypertensive drugs, except ACE inhibitors and angiotensin II receptor blockers, may be continued. Methyldopa has been evaluated most extensively and is therefore recommended for women whose hypertension is first diagnosed during pregnancy. Beta-blockers compare favorably with methyldopa with respect to efficacy and are considered safe in the latter part of pregnancy, however, their use in early pregnancy may be associated with growth retardation of the fetus (table 15). ACE inhibitors and angiotensin II receptor blockers should be avoided because serious neonatal problems, including renal failure and death, have been reported when mothers have taken these agents during the last two trimesters of pregnancy.\textsuperscript{162Pr}

**Preeclampsia.** Preeclampsia, a pregnancy-specific condition, is increased blood pressure accompanied by proteinuria, edema, or both and at times by abnormalities of coagulation and renal and liver function that may progress rapidly to a convulsive phase, eclampsia. Preeclampsia occurs primarily during first pregnancies and after the 20th week of gestation. It may be superimposed on preexisting chronic hypertension. Large trials have not confirmed the benefit of prophylactic low-dose aspirin or supplemental calcium to prevent preeclampsia.\textsuperscript{163Pr,164Pr} A detailed summary of hypertension in pregnancy was published in a report by the NHBPEP Working Group on High Blood Pressure in Pregnancy.\textsuperscript{165Pr} More recent reviews have been published.\textsuperscript{162Pr,163Pr}

---

Table 14

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Girls' SBP/DBP 50th Percentile for Height</th>
<th>Girls' SBP/DBP 75th Percentile for Height</th>
<th>Boys' SBP/DBP 50th Percentile for Height</th>
<th>Boys' SBP/DBP 75th Percentile for Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104/58</td>
<td>105/59</td>
<td>102/57</td>
<td>104/58</td>
</tr>
<tr>
<td>6</td>
<td>111/73</td>
<td>112/73</td>
<td>114/74</td>
<td>115/75</td>
</tr>
<tr>
<td>12</td>
<td>123/80</td>
<td>124/81</td>
<td>123/81</td>
<td>125/82</td>
</tr>
<tr>
<td>17</td>
<td>129/84</td>
<td>130/85</td>
<td>136/87</td>
<td>138/88</td>
</tr>
</tbody>
</table>

* Adapted from the report by the NHBPEP Working Group on Hypertension Control in Children and Adolescents.\textsuperscript{160} SBP indicates systolic blood pressure; DBP, diastolic blood pressure.
Hormone Replacement Therapy and Blood Pressure Response

The presence of hypertension is not a contraindication to postmenopausal estrogen replacement therapy. A recent study indicated that blood pressure does not increase significantly with hormone replacement therapy in most women with and without hypertension and that hormone replacement therapy has a beneficial effect on overall cardiovascular risk factor profiles. However, a few women may experience a rise in blood pressure attributable to estrogen therapy. Therefore, it is recommended that all women treated with hormone replacement therapy have their blood pressure monitored more frequently after such therapy is instituted. The effect of transdermal estrogen and progestogen on blood pressure has not been established.

<table>
<thead>
<tr>
<th>Suggested Drug</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central alpha-agonists</td>
<td>Methyldopa (C) is the drug of choice recommended by the NHBPEP Working Group.</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>Atenolol (C) and metoprolol (C) appear to be safe and effective in late pregnancy. Labetalol (C) also appears to be effective (alpha- and beta-blockers).</td>
</tr>
<tr>
<td>Calcium antagonists</td>
<td>Potential synergism with magnesium sulfate may lead to precipitous hypotension. (C)</td>
</tr>
<tr>
<td>ACE inhibitors, angiotensin II receptor blockers</td>
<td>Fetal abnormalities, including death, can be caused, and these drugs should not be used in pregnancy. (D)</td>
</tr>
<tr>
<td>Diuretics</td>
<td>Diuretics (C) are recommended for chronic hypertension if prescribed before gestation or if patients appear to be salt-sensitive. They are not recommended in preeclampsia.</td>
</tr>
<tr>
<td>Direct vasodilators</td>
<td>Hydralazine (C) is the parenteral drug of choice based on its long history of safety and efficacy. (C)</td>
</tr>
</tbody>
</table>

* Adapted from Sibai and Lindheimer. There are several other antihypertensive drugs for which there are very limited data. The U.S. Food and Drug Administration classifies pregnancy risk as follows: C, adverse effects in animals; no controlled trials in humans; use if risk appears justified; D, positive evidence of fetal risk. ACE indicates angiotensin-converting enzyme.
Hypertension is extremely common in older Americans. Among Americans age 60 and older examined in the NHANES III, elevated blood pressure was found in 60 percent of non-Hispanic whites, 71 percent of non-Hispanic African Americans, and 61 percent of Mexican Americans.24

Especially among older persons, SBP is a better predictor of events (coronary heart disease, cardiovascular disease, heart failure, stroke, end-stage renal disease, and all-cause mortality) than is DBP.26 Recently, it has become clear that an elevated pulse pressure (SBP minus DBP), which indicates reduced vascular compliance in large arteries, may be an even better marker of increased cardiovascular risk than either SBP or DBP alone.139 This is particularly relevant to older individuals who frequently have an isolated elevation of SBP (140 mm Hg or greater with a DBP below 90 mm Hg) (table 2). Those with stage 1 isolated systolic hypertension are at significantly increased cardiovascular risk, but the benefits of treatment in those individuals have not yet been demonstrated in a controlled trial.167

Primary hypertension is by far the most common form of hypertension in older persons. However, clinicians must recognize that certain identifiable causes of hypertension (e.g., atherosclerotic renovascular hypertension, primary aldosteronism) may occur more frequently in older persons, especially in those whose hypertension first presented after age 60 or is resistant to treatment.145

Blood pressure must be measured in older persons with special care because some older persons have pseudohypertension (falsey high sphygmomanometer readings) due to excessive vascular stiffness.168 In addition, more older persons with hypertension, especially women, may have “white-coat hypertension” and excessive variability in SBP.169 In the absence of target organ damage, clinicians should consider pseudohypertension or “white-coat hypertension” and should obtain readings outside the office (see chapter 2). In addition, older patients are more likely than younger patients to exhibit an orthostatic fall in blood pressure and hypotension; thus, in older patients, blood pressure should always be measured in the standing as well as seated or supine positions.170

Treatment of hypertension in older persons has demonstrated major benefits (figure 7). Large trials of patients older than age 60 have shown that antihypertensive drug therapy reduces stroke, CHD, cardiovascular disease, heart failure, and mortality.160,171,172,173,174

Hypertension therapy in older persons, as in younger persons, should begin with lifestyle modifications.26 Older patients will respond to modest salt reduction and weight loss.80 If goal blood pressure is not achieved, then pharmacologic treatment is indicated. The starting dose in older patients should be about half of that used in younger patients. Thiazide diuretics or beta-blockers in combination with thiazide diuretics are recommended because they are effective in reducing mortality and morbidity in older persons with hypertension as shown in multiple randomized controlled trials.120,171

When compared to each other, diuretics (hydrochlorothiazide with amiloride hydrochloride) are superior to the beta-blocker atenolol.172 In older patients with isolated systolic hypertension, diuretics are preferred because they have significantly reduced multiple endpoint events.171 In addition, an RCT in such patients taking the dihydropyridine nitrendipine showed a 42-percent reduction in fatal and nonfatal stroke over an average 2-year interval.140 The concomitant reductions in coronary events and heart failure did not reach statistical significance although a favorable trend was reported and all cardiovascular disease mortality was significantly reduced. Because nitrendipine is not available in the United States, other long-acting dihydropyridine calcium antagonists are considered to be appropriate alternatives in these patients.
The goal of treatment in older patients should be the same as in younger patients (to below 140/90 mm Hg if at all possible), although an interim goal of SBP below 160 mm Hg may be necessary in those patients with marked systolic hypertension.26 Any reduction in blood pressure appears to confer benefit—the closer to normal, the greater the benefit. Drugs that exaggerate postural changes in blood pressure (peripheral adrenergic blockers, alpha-blockers, and high-dose diuretics) or drugs that can cause cognitive dysfunction (central alpha-2-agonists) should be used with caution. Additional recommendations about hypertension in older persons can be found in the report by the NHBPEP Working Group on Hypertension in the Elderly.26

Patients With Hypertension and Coexisting Cardiovascular Diseases

Patients With Cerebrovascular Disease
Clinically evident cerebrovascular disease is an indication for antihypertensive treatment. However, immediately after the occurrence of an ischemic cerebral infarction, it is appropriate to withhold treatment (unless blood pressure is very high) until the situation has been stabilized. Even when treatment has been withheld temporarily, the eventual goal is to reduce blood pressure gradually while avoiding orthostatic hypotension. Patients with acute ischemic stroke who are treated with fibrinolytic agents require careful blood pressure monitoring, especially over the first 24 hours after starting treatment. SBP of 180 mm Hg or greater or DBP of 105 mm Hg or greater may be controlled with intravenous agents with careful monitoring for worsening of neurological status.175C

Patients With Coronary Artery Disease
Patients with coronary artery disease and hypertension are at particularly high risk for cardiovascular morbidity and mortality. The benefits and safety of antihypertensive therapy in such patients are well established.176Pr,177Pr Excessively rapid lowering of blood pressure, particularly when it causes reflex tachycardia and sympathetic activation, should be avoided. Blood pressure should be lowered to the usual target range (below 140/90 mm Hg), and even lower blood pressure is desirable if angina persists. Beta-blockers or calcium antagonists may be specifically useful in patients with hypertension and angina pectoris; however, short-acting calcium antagonists should not be used.125M,178Re,179Re After myocardial infarction, beta-blockers without intrinsic sympathomimetic activity should be given because they reduce the risk for subsequent myocardial infarction or sudden cardiac death. ACE inhibitors are also useful after myocardial infarction, especially with left ventricular systolic dysfunction, to prevent subsequent heart failure and mortality.176Pr

If beta-blockers are ineffective or contraindicated, verapamil hydrochloride or diltiazem hydrochloride may be used because they have been shown to reduce cardiac events and mortality modestly in two circumstances: (1) following non-Q-wave myocardial infarction, and (2) after myocardial infarction with preserved left ventricular function (LVH).119Pr,180Pr,181Pr

Some patients with hypertension, especially when accompanied by severe LVH, may experience angina without evidence of coronary atherosclerosis. This is thought to reflect an imbalance between myocardial oxygen supply and demand, due in part to changes in the coronary microcirculation. Treatment should be directed at blood pressure control, reversal of LVH, and avoidance of tachycardia, which may exacerbate the supply-demand mismatch.

Patients With Left Ventricular Hypertrophy
Development of LVH permits cardiac adaptation to the increased afterload imposed by elevated arterial pressure. However, LVH is a major independent risk factor for sudden cardiac death, myocardial infarction, stroke, and other cardiovascular morbidity and mortality events.182F,183F Evidence shows that antihypertensive agents (except direct vasodilators such as hydralazine
and minoxidil), weight reduction, and decrease of excessive salt intake are capable of reducing increased left ventricular mass and wall thickness. In one study in men with hypertension, treatment with a diuretic and an ACE inhibitor was better than treatment with other drug classes tested for regressing LVH at 1 year. Observational data indicate that the regression of electrocardiographic evidence of LVH is associated with a reduction in the risk for cardiovascular events. However, no controlled studies demonstrate that such reversal of LVH offers additional benefits beyond that offered by reduction of blood pressure.

The electrocardiogram remains valuable not only for detecting left atrial hypertrophy and LVH but also for identifying evidence of myocardial ischemia and arrhythmia. Echocardiography is more sensitive and specific for identifying LVH, but it is too expensive for routine use. Limited echocardiography will identify LVH at a cost that may justify its use in some patients (e.g., those with untreated stage 1 hypertension, no cardiovascular risk factors, no evidence of clinical cardiovascular disease, and no target organ damage).

Patients With Cardiac Failure
In patients with hypertension, structural alterations in the left ventricle (LVH or left ventricular remodeling with dilation) as well as myocardial ischemia from coronary artery atherosclerosis may contribute to the development of heart failure. Some patients with hypertension (current or past) develop heart failure with a normal ejection fraction, implying diastolic dysfunction. Reports from the Framingham Heart Study have demonstrated that hypertension continues to be the major cause of left ventricular failure in the United States. Control of elevated arterial pressure using lifestyle changes and drug therapy improves myocardial function and prevents and reduces heart failure and cardiovascular mortality. After myocardial infarction, therapy with ACE inhibitors prevents subsequent heart failure and reduces morbidity and mortality. In treating heart failure, ACE inhibitors, when used alone or in conjunction with digoxin or diuretics, are effective in reducing morbidity and mortality. When ACE inhibitors are contraindicated or not tolerated, the vasodilator combination of hydralazine hydrochloride and isosorbide dinitrate is also effective in these patients. The alpha-beta-blocker carvedilol added to ACE inhibitors has been shown to be beneficial, and, in one trial, the angiotensin II receptor blocker losartan potassium was superior to captopril in reducing mortality. The dihydropyridine calcium antagonists amlodipine besylate and felodipine have been demonstrated to be safe in treating angina and hypertension in patients with advanced left ventricular dysfunction when used in addition to ACE inhibitors, diuretics, or digoxin; other calcium antagonists are not recommended in these patients.

Patients With Peripheral Arterial Disease
Hypertension is one of the major risk factors for the development of carotid atherosclerosis and peripheral arterial disease with intermittent claudication and aneurysms. However, data are not available to determine whether antihypertensive therapy will alter the course of these processes. Early multicenter trials demonstrated a reduction in deaths from dissecting aortic aneurysms.

Patients With Hypertension and Other Coexisting Diseases
Patients With Renal Parenchymal Disease
Pathophysiology. Hypertension may result from any form of renal disease that reduces the number of functioning nephrons, leading to sodium and water retention. Hypertensive nephrosclerosis is among the most common causes of progressive renal disease, particularly in African Americans. Followup of large numbers of men screened for the Multiple Risk Factor Intervention Trial and of male veterans has provided the most conclusive and direct evidence of a relationship between blood pressure and end-stage renal disease.
Strategies for Slowing Progressive Renal Failure in Patients With Hypertension. Early detection of hypertensive renal damage is essential. Small elevations of serum creatinine reflect significant losses in glomerular filtration rate. Evaluation should include urinalysis to detect proteinuria or hematuria and possibly renal sonography to exclude lower tract obstruction, to exclude autosomal dominant polycystic kidney disease, and to determine the size of the kidneys. Reversible causes of renal failure always should be sought and treated.

Blood pressure should be controlled to 130/85 mm Hg—or lower (125/75 mm Hg) in patients with proteinuria in excess of 1 gram per 24 hours—with whatever antihypertensive therapy is necessary. Reducing dietary sodium to a level lower than that recommended for uncomplicated hypertension (less than 100 mmol per day of sodium) helps control high blood pressure in patients with renal insufficiency. If dietary protein restriction is instituted, close attention must be paid to total energy (caloric) intake to prevent malnutrition. Restriction of dietary potassium and phosphorus in patients with creatinine clearances below 30 mL per minute is needed to prevent hyperkalemia and to help prevent secondary hyperparathyroidism.

Antihypertensive Drug Recommendations for Patients With Hypertension and Renal Disease. The most important action to slow progressive renal failure is to lower blood pressure to goal. All classes of antihypertensive drugs are effective, and, in most cases, multiple antihypertensive drugs may be needed. Impressively, ACE inhibitors in patients with type 1 diabetic nephropathy, in patients with proteinuria greater than 1 gram per 24 hours, and in patients with renal insufficiency, have been achieved with ACE inhibitors in patients with type 1 diabetic nephropathy, in patients with proteinuria greater than 1 gram per 24 hours, and in patients with renal insufficiency. Consequently, patients with hypertension who have renal insufficiency should receive, unless contraindicated, an ACE inhibitor (in most cases, along with a diuretic) to control hypertension and to slow progressive renal failure. In patients with a creatinine level of 265.2 μmol/L (3 mg/dL) or greater, ACE inhibitors should be used with caution.

An initial transient decrease in glomerular filtration rate may occur during the first 3 months of treatment as blood pressure is lowered. If patients are euvolemic and creatinine rises 88.4 μmol/L (1 mg/dL) above baseline levels, creatinine and potassium should be remeasured after several days; if they remain persistently elevated, consideration should be given to the diagnosis of renal artery stenosis and ACE inhibitors or angiotensin II receptor blockers discontinued because these drugs can markedly reduce renal perfusion in patients with bilateral renal artery stenosis or renal artery stenosis to a solitary kidney.

Thiazide diuretics are not effective with advanced renal insufficiency (serum creatinine level of 221.0 μmol/L [2.5 mg/dL] or greater), and loop diuretics are needed (often at relatively large doses). Combining a loop diuretic with a long-acting thiazide diuretic, such as metolazone, is effective in patients resistant to a loop diuretic alone. Potassium-sparing diuretics should be avoided in patients with renal insufficiency.

Patients With Renovascular Disease. Hemodynamically significant renal artery stenosis may be associated with all stages of hypertension, but it is more commonly found with stage 3 or resistant hypertension and, when bilateral, can lead to reduced kidney function (ischemic nephropathy). Clinical clues to renovascular disease include (1) onset of hypertension before age 30, especially without a family history, or recent onset of significant hypertension after age 55; (2) an abdominal bruit, particularly if it continues into diastole and is lateralized; (3) accelerated or resistant hypertension; (4) recurrent (flash) pulmonary edema; (5) renal failure of uncertain cause, especially with a normal urinary sediment;
(6) coexisting, diffuse atherosclerotic vascular disease, especially in heavy smokers; and (7) acute renal failure precipitated by antihypertensive therapy, particularly ACE inhibitors or angiotensin II receptor blockers.

In patients with indications of renovascular disease, captopril-enhanced radionuclide renal scan, duplex Doppler flow studies, and magnetic resonance angiography may be used as noninvasive screening tests. Three-dimensional images can be obtained by spiral computed tomography, a technique that unfortunately requires intravenous contrast.204

Definitive diagnosis of renovascular disease requires renal angiography, which carries some risk, particularly radio-contrast-induced acute renal failure or atheroembolism in older patients.212

Management. In younger patients with fibromuscular dysplasia, results of percutaneous transluminal renal angioplasty (PTRA) have been excellent and comparable to surgical revascularization.213

Patients with normal renal function and atherosclerotic renal artery stenosis that is focal, unilateral, and nonostial, without widespread vascular disease, are managed similarly to those with fibromuscular dysplasia.214 Renal artery stenting has become an important adjunct to PTRA, being used to counteract elastic recoil and to abolish the residual stenosis often observed after PTRA.215

Even though many patients with high-grade renal artery stenosis remain stable for prolonged periods, if blood pressure is well controlled,216 surgical revascularization or PTRA with renal artery stenting may be needed to preserve renal function.204

Patients With Diabetes Mellitus
To detect evidence of autonomic dysfunction and orthostatic hypotension, blood pressure should be measured in the supine, sitting, and standing positions in all patients with diabetes mellitus; automated ambulatory blood pressure monitoring may be especially helpful (see chapter 2).

Antihypertensive drug therapy should be initiated along with lifestyle modifications, especially weight loss, to reduce arterial blood pressure to below 130/85 mm Hg.

ACE inhibitors, alpha-blockers, calcium antagonists, and diuretics in low doses are preferred because of fewer adverse effects on glucose homeostasis, lipid profiles, and renal function.217,218 Although beta-blockers may have adverse effects on peripheral blood flow, prolong hypoglycemia, and mask hypoglycemic symptoms, patients with diabetes who are treated with diuretics and beta-blockers experience a similar or greater reduction of CHD and total cardiovascular events compared with persons without diabetes.219-220

In patients with diabetic nephropathy, ACE inhibitors are preferred.206,221 They are contraindicated or not well tolerated, angiotensin II receptor blockers may be considered. Renoprotection also has been shown by the use of a calcium antagonist.223,224

Insulin Resistance. Obese patients with hypertension have resistance to insulin-mediated glucose uptake by skeletal muscle, which can lead to impaired glucose tolerance and type 2 diabetes.215

Some nonobese persons with hypertension and persons with normal blood pressure who have first-degree relatives with hypertension also have insulin resistance. It is uncertain whether the higher peripheral insulin levels or the insulin resistance may cause hypertension.225 These metabolic disturbances as well as the hypertension respond to weight loss, exercise, insulin-sensitizing agents, vasodilating antihypertensive drugs, and certain lipid-lowering drugs.226

Patients With Dyslipidemia
The common coexistence and increased risk of dyslipidemia and hypertension mandate aggressive management of both conditions.227

Because lifestyle modifications are the first approach to the treatment of both conditions, great emphasis must be placed on control of overweight; reduced intake of saturated fat, cho-
Historically, smoking, high blood pressure, and high blood cholesterol have been the leading causes of CHD mortality.

In high doses, thiazide diuretics and loop diuretics can induce at least short-term increases in levels of total plasma cholesterol, triglycerides, and LDL cholesterol. Dietary modifications can reduce or eliminate these effects. Low-dose thiazide diuretics do not produce these effects. In the Systolic Hypertension in the Elderly Program and the Hypertension Detection and Follow-up Program, which both used diuretics as initial monotherapy or in combination, the risks for cerebrovascular and coronary events were reduced equally in persons with normal lipid levels and those with elevated lipid levels.

Beta-blockers may increase levels of plasma triglycerides transiently and reduce levels of HDL cholesterol. Despite this, beta-blockers have been shown to reduce the rate of sudden death, overall mortality, and recurrent myocardial infarction in patients with previous myocardial infarction.

Alpha-blockers may decrease serum cholesterol concentration to a modest degree and increase HDL cholesterol. ACE inhibitors, angiotensin II receptor blockers, calcium antagonists, and central adrenergic agonists have clinically neutral effects on levels of serum lipids and lipoproteins.

Recent trials have shown that aggressive lipid reduction, especially with beta-hydroxy-beta-methylglutaryl CoA (HMG-CoA) reductase inhibitors (statin drugs), provides both primary and secondary protection against CHD. Lifestyle changes and hypolipidemic agents should be used to reach appropriate goals in patients with hypertension and hyperlipidemia. Guidance in the selection of appropriate cholesterol-lowering therapy is available in the guidelines of the National Cholesterol Education Program.

Patients With Sleep Apnea
Obstructive sleep apnea is characterized by loud snoring and disrupted breathing or gasping during sleep, is more common in patients with hypertension, and is associated with a number of adverse clinical consequences. Undiagnosed sleep apnea may explain the difficulty in controlling high blood pressure in some patients; improved hypertension control has been reported in patients after treatment of their sleep apnea.

Patients With Bronchial Asthma or Chronic Airway Disease
Elevated blood pressure is relatively common in acute asthma and may be related to treatment with systemic corticosteroids or beta-agonists. Beta-blockers and alpha-beta-blockers may exacerbate asthma; therefore, these agents should not be used in patients with asthma except in special circumstances. In addition, the topical ophthalmic application of beta-blockers such as timolol maleate may worsen asthma. Bronchial reactivity to histamine and kinin remains unchanged with ACE inhibitors, which are safe in most patients with asthma. If a cough related to ACE inhibitor use occurs, angiotensin II receptor blockers are an alternative. Many over-the-counter medications sold as decongestants and cold and asthma remedies may contain a sympathomimetic agent that can raise blood pressure. Nevertheless, these medications are generally safe when taken in limited doses in patients with hypertension who are receiving adequate antihypertensive therapy. Cromolyn sodium, ipratropium bromide, or corticosteroids by inhalation can be used safely for nasal congestion in persons with hypertension.

Patients With Gout
Hyperuricemia is a frequent finding in patients with untreated hypertension and may reflect a decrease in renal blood flow. In addition, all diuretics can increase serum uric acid levels but
rarely induce acute gout.\textsuperscript{243}F In patients with gout, diuretics should be avoided if possible. Diuretic-induced hyperuricemia does not require treatment in the absence of gout or urate stones.

**Patients Undergoing Surgery**

Blood pressure of 180\textendash 110 mm Hg or greater is associated with a greater risk for perioperative ischemic events.\textsuperscript{244}Pr When possible, surgery should be delayed to bring blood pressure down to lower levels.\textsuperscript{244}Pr The perioperative risk for any patient, and especially patients with hypertension, is in part related to the adrenergic arousal before, during, and after surgery.\textsuperscript{245}T Those without prior antihypertensive therapy may be best treated with cardioselective beta-blocker therapy before and after surgery.\textsuperscript{246}Ra

Adequate potassium supplementation should be provided to correct hypokalemia well in advance of surgery. Surgical candidates who are controlling their blood pressure adequately with medication should be maintained on their regimen until the time of surgery, and therapy should be reinstituted as soon as possible after surgery. If oral intake must be interrupted, parenteral therapy with diuretics, adrenergic inhibitors, vasodilators, ACE inhibitors, or transdermal clonidine hydrochloride may be used to prevent the rebound hypertension that may follow sudden discontinuation of some adrenergic-inhibiting agents. Two studies have indicated a need for caution with calcium antagonists because of an increase in surgical bleeding.\textsuperscript{247}F,248C

**Miscellaneous Causes for Increased Blood Pressure**

**Cocaine**

The majority of cocaine-dependent individuals are normotensive, and no evidence suggests that ongoing cocaine abuse causes chronic hypertension.\textsuperscript{249}H However, cocaine abuse must now be considered in all patients presenting to an emergency department with hypertension-related problems. Clues include the presence of chest pain, tachycardia, dilated pupils, combativeness, altered mental status, and seizures. Cocaine may induce severe ischemia from coronary and cerebral vasoconstriction as well as acute renal failure due to rhabdomyolysis.\textsuperscript{250}

Nitroglycerin is indicated to reverse cocaine-related coronary vasoconstriction,\textsuperscript{251}X but its anti-hypertensive efficacy may be inadequate and other parenteral agents may be needed (table 10). Nonselective beta-blockers such as propranolol should generally be avoided because of the risk of a paradoxical rise in blood pressure as well as coronary vasoconstriction due to the exaggerated effect of catecholamines on unblocked alpha-receptors.\textsuperscript{252}Ra

**Amphetamines**

Acute amphetamine toxicity is similar to that of cocaine but longer in duration, lasting up to several hours. Cerebral and systemic vasculitis and renal failure may occur. Treatment for amphetamine toxicity is similar to that for cocaine toxicity.

**Immunosuppressive Agents**

Immunosuppressive regimens based on cyclosporine, tacrolimus, and steroids increase blood pressure in 50 to 80 percent of recipients of solid organ transplants. When cyclosporine is used alone in nontransplant applications, hypertension develops in 25 to 30 percent of patients. The rise in blood pressure reflects widespread vasoconstriction. Renal vasoconstriction leads to reduced glomerular filtration and enhanced sodium reabsorption. Therapy is based on vasodilation, often including dihydropyridine calcium antagonists. Diuretics are effective but may exaggerate prerenal azotemia and may precipitate gout.\textsuperscript{253}Pr

**Erythropoietin**

Recombinant human erythropoietin increases blood pressure in 18 to 45 percent of patients when used in the treatment of end-stage renal disease. Hypertension is produced by a rise in systemic vascular resistance, partly related to direct vascular effects of recombinant human ery-
SUMMARY

• Racial and ethnic minority populations are growing segments of our society. The prevalence of hypertension in these populations differs across groups, and control rates are not as good as in the general population. Clinicians should be aware of these management challenges, taking social and cultural factors into account.

• Guidelines are provided for management of children and women with hypertension.

• In older persons, diuretics are preferred and long-acting dihydropyridine calcium antagonists may be considered.

• Specific therapy for patients with left ventricular hypertrophy, coronary artery disease, and heart failure are outlined.

• Patients with renal insufficiency with greater than 1 gram per day of proteinuria should be treated to a therapy blood pressure goal of 125/75 mm Hg; those with less proteinuria should be treated to a blood pressure goal of 130/85 mm Hg. ACE inhibitors have additional renoprotective effects over other antihypertensive agents.

• Patients with diabetes should be treated to a therapy blood pressure goal of below 130/85 mm Hg.

• Hypertension may coexist with various other conditions and may be induced by various pressor agents.

Other Agents

Hypertension may be induced by numerous other chemical agents and toxins, such as mineralocorticoids and derivatives, anabolic steroids, monoamine oxidase inhibitors, lead, cadmium, and bromocriptine.254Pr
REFERENCES

These symbols are placed after the reference number for those citations provided in chapters 3 and 4 in the text. Some references may have more than one code depending on the component of the study cited, e.g., a randomized controlled trial having a long-term followup.

M meta-analyses—an analysis of a compendium of experimental studies;
Ra randomized controlled trials—also known as experimental studies;
Re retrospective analysis—also known as case control studies;
F prospective followup—also known as cohort studies, including historical cohort studies and long-term followup;
X cross-sectional population studies—also known as prevalence studies;
Pr previous review or position statements; and
C clinical interventions (nonrandomized).


33. University of Maryland School of Medicine. Control of Blood Pressure at the Workplace: University of Maryland School of Medicine, Baltimore, MD: University of Maryland; NTIS accession no. PB83-113381; 1982.


78. Singer DR, Markandu ND, Cappuccio FP, Miller MA, Sagnella GA, MacGregor GA. Reduction of salt intake during converting enzyme inhibitor treatment compared with addition of a thiazide. Hypertension 1995;25:1042-1044. Ra


181. Koren MJ, Devereux RB, Casale PN, Savage DD, Kannel WB. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation 1997;95:2007-2014. Ra


199. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Effects of treatment on morbidity in hypertension: results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 1967;202:1028-1034. Ra


220. Shorr RI, Ray WA, Daugherty JR, Griffin MR. Antihypertensives and the risk of serious hyperglycemia in older persons using insulin or sulfonylureas. JAMA 1997;278:40-43. Re


229. Stamler J, Briefel RR, Milas C, Grandits GA, Caggiula AW. Relation of changes in dietary lipids and weight, trial years 1-6, to changes in the special intervention and usual care groups in the Multiple Risk Factor Intervention Trial. Am J Clin Nutr 1997;65(suppl):272S-288S. F


232. Curb JD, Maxwell MH, Schneider KA, Taylor JO, Shulman NB. Adverse effects of antihypertensive medications in the Hypertension Detection and Follow-up Program. Prog Cardiovasc Dis 1986;29(suppl 1):73-88. F


The DASH Diet

This eating plan is from the “Dietary Approaches to Stop Hypertension” (DASH) clinical study. The research was funded by the National Heart, Lung, and Blood Institute (NHLBI), with additional support by the National Center for Research Resources and the Office of Research on Minority Health, all units of the National Institutes of Health. The final results of the DASH study appear in the April 17, 1997, issue of the New England Journal of Medicine. The results show that the DASH “combination diet” lowered blood pressure and, so, may help prevent and control high blood pressure.

The “combination diet” is rich in fruits, vegetables, and low-fat dairy foods and low in saturated and total fat. It also is low in cholesterol; high in dietary fiber, potassium, calcium, and magnesium; and moderately high in protein.

The DASH eating plan shown below is based on 2,000 calories a day. Depending on your caloric needs, your number of daily servings in a food group may vary from those listed.

<table>
<thead>
<tr>
<th>Food Group</th>
<th>Daily Servings</th>
<th>Serving Sizes</th>
<th>Examples and Notes</th>
<th>Significance of Each Food Group to the DASH Diet Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains and grain products</td>
<td>7-8</td>
<td>1 slice bread</td>
<td>whole wheat bread, English muffin, pita bread, bagel, cereals, pasta, or cereal</td>
<td>major sources of energy and fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2 C dry cereal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2 C cooked rice, pasta, or cereal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>4-5</td>
<td>1 C raw leafy vegetable</td>
<td>tomatoes, potatoes, carrots, peas, squash, broccoli, turnip greens, collards, kale, spinach, artichokes, beans, sweet potatoes</td>
<td>rich sources of potassium, magnesium, and fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2 C cooked vegetable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 oz vegetable juice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td>4-5</td>
<td>6 oz fruit juice</td>
<td>apricots, bananas, dates, grapes, oranges, orange juice, grapefruit, grapefruit juice, mangoes, melons, peaches, pineapples, prunes, raisins, strawberries, tangerines</td>
<td>important sources of potassium, magnesium, and fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 medium fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4 C dried fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4 C fresh, frozen, or canned fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-fat or nonfat dairy foods</td>
<td>2-3</td>
<td>8 oz milk</td>
<td>skim or 1% milk, skim or low-fat buttermilk, nonfat or low-fat yogurt, part-skim mozzarella cheese, nonfat cheese</td>
<td>major sources of calcium and protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 C yogurt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 oz cheese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meats, poultry, and fish</td>
<td>2 or less</td>
<td>3 oz cooked meats, poultry, or fish</td>
<td>select only lean; trim away visible fats; broil, roast, or boil, instead of frying; remove skin from poultry</td>
<td>rich sources of protein and magnesium</td>
</tr>
<tr>
<td>Nuts, seeds, and legumes</td>
<td>4-5 per week</td>
<td>1.5 oz or 1/3 C nuts</td>
<td>almonds, filberts, mixed nuts, peanuts, walnuts, sunflower seeds, kidney beans, lentils</td>
<td>rich sources of energy, magnesium, potassium, protein, and fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2 oz or 2 Tbsp seeds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2 C cooked legumes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Turn the page for a sample menu using the DASH diet.
### The DASH Diet • Sample Menu • based on 2,000 calories/day

<table>
<thead>
<tr>
<th>Food</th>
<th>Amount</th>
<th>Servings Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>orange juice</td>
<td>6 oz</td>
<td>1 fruit</td>
</tr>
<tr>
<td>1% low-fat milk</td>
<td>8 oz (1 C)</td>
<td>1 dairy</td>
</tr>
<tr>
<td>corn flakes (with 1 tsp sugar)</td>
<td>1 C</td>
<td>2 grains</td>
</tr>
<tr>
<td>banana</td>
<td>1 medium</td>
<td>1 fruit</td>
</tr>
<tr>
<td>whole wheat bread</td>
<td>1 slice</td>
<td>1 grain</td>
</tr>
<tr>
<td>(with 1 Tbsp jelly)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soft margarine</td>
<td>1 tsp</td>
<td>1 fat</td>
</tr>
<tr>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chicken salad</td>
<td>3/4 C</td>
<td>1 poultry</td>
</tr>
<tr>
<td>pita bread</td>
<td>1/2, large</td>
<td>1 grain</td>
</tr>
<tr>
<td>raw vegetable medley:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- carrot and celery sticks</td>
<td>3-4 sticks each</td>
<td>1 vegetable</td>
</tr>
<tr>
<td>- radishes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>- loose-leaf lettuce</td>
<td>2 leaves</td>
<td></td>
</tr>
<tr>
<td>- part-skim mozzarella cheese</td>
<td>1.5 slice (1.5 oz)</td>
<td>1 dairy</td>
</tr>
<tr>
<td>1% low-fat milk</td>
<td>8 oz (1 C)</td>
<td>1 dairy</td>
</tr>
<tr>
<td>fruit cocktail in light syrup</td>
<td>1/2 C</td>
<td>1 fruit</td>
</tr>
<tr>
<td>Dinner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>herbed baked cod</td>
<td>3 oz</td>
<td>1 fish</td>
</tr>
<tr>
<td>scallion rice</td>
<td>1 C</td>
<td>2 grains</td>
</tr>
<tr>
<td>steamed broccoli</td>
<td>1/2 C</td>
<td>1 vegetable</td>
</tr>
<tr>
<td>stewed tomatoes</td>
<td>1/2 C</td>
<td>1 vegetable</td>
</tr>
<tr>
<td>spinach salad:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- raw spinach</td>
<td>1/2 C</td>
<td>1 vegetable</td>
</tr>
<tr>
<td>- cherry tomatoes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>- cucumber</td>
<td>2 slices</td>
<td></td>
</tr>
<tr>
<td>light Italian salad dressing</td>
<td>1 Tbsp</td>
<td>1/2 fat</td>
</tr>
<tr>
<td>whole wheat dinner roll</td>
<td>1 small</td>
<td>1 grain</td>
</tr>
<tr>
<td>soft margarine</td>
<td>1 tsp</td>
<td>1 fat</td>
</tr>
<tr>
<td>melon balls</td>
<td>1/2 C</td>
<td>1 fruit</td>
</tr>
<tr>
<td>Snacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dried apricots</td>
<td>1 oz (1/4 C)</td>
<td>1 fruit</td>
</tr>
<tr>
<td>mini-pretzels</td>
<td>1 oz (3/4 C)</td>
<td>1 grain</td>
</tr>
<tr>
<td>mixed nuts</td>
<td>1.5 oz (1/3 C)</td>
<td>1 nuts</td>
</tr>
<tr>
<td>diet ginger ale</td>
<td>12 oz</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Total number of servings in 2,000 calories/day menu:

<table>
<thead>
<tr>
<th>Food Group</th>
<th>Servings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains</td>
<td>8</td>
</tr>
<tr>
<td>Vegetables</td>
<td>4</td>
</tr>
<tr>
<td>Fruits</td>
<td>5</td>
</tr>
<tr>
<td>Dairy Foods</td>
<td>3</td>
</tr>
<tr>
<td>Meats, Poultry, and Fish</td>
<td>2</td>
</tr>
<tr>
<td>Nuts, Seeds, and Legumes</td>
<td>1</td>
</tr>
<tr>
<td>Fats and Oils</td>
<td>2.5</td>
</tr>
</tbody>
</table>

#### Tips on Eating the DASH Way

- Start small. Make gradual changes in your eating habits.
- Center your meal around carbohydrates, such as pasta, rice, beans, or vegetables.
- Treat meat as one part of the whole meal, instead of the focus.
- Use fruits or low-fat, low-calorie foods such as sugar-free gelatin for desserts and snacks.

#### REMEMBER! If you use the DASH diet to help prevent or control high blood pressure, make it part of a lifestyle that includes choosing foods lower in salt and sodium, keeping a healthy weight, being physically active, and, if you drink alcohol, doing so in moderation.

To learn more about high blood pressure, call 1-800-575-WELL or visit the NHLBI Web site at http://www.nhlbi.nih.gov/nhlbi/nhlbi.htm. DASH is also online at http://dash.bwh.harvard.edu.
INDEX OF KEY TERMS

ACE inhibitors, 22, 27-30, 32-34, 39, 42-43, 46-51
acute ischemic stroke (see stroke)
acute myocardial infarction (see myocardial infarction)
adherence to treatment or therapy, 1, 9, 12, 23, 34-35, 37-39
adrenergic antagonists, 26, 29, 31, 46
adrenergic blockers (see adrenergic antagonists)
adverse effects, 14, 19, 23, 34-35, 37-39
agonists (see type of agonist)
alcohol, 14, 20-21, 50
aldosteronism, 15, 45
alpha2-agonists, 26, 29, 39, 46
alpha-beta-blockers, 27, 32, 42, 47, 50
alpha-blockers, 26, 46, 49-50
ambulatory blood pressure, 13-14, 18, 49
ambulatory monitors (see monitors)
amiloride, 45
amlodipine, 30, 47
anabolic steroids, 42, 52
aneroid manometers, 12
aneurysm, 38
angina, 16, 30-31, 38, 42, 46-47
angiotensin-converting enzyme inhibitors (see ACE inhibitors)
angiotensin II receptor blockers, 1, 22, 27, 29-30, 32, 42-44, 48-50
anorectic agents, 21
antihypertensive medications (see also individual drug classes and drug names), 26-27
aortic aneurysm (see aneurysm)
arhythmia, 47
aspirin, 43
asthma, 50
atenolol, 45
atherosclerosis, 33, 46-47
autonomic dysfunction, 14, 49
beta-agonists, 50
beta-blockers, 1, 8, 29-30, 32-35, 39, 42-43, 45-46, 49-51
biofeedback, 22
body mass index, 20
bromocriptine, 52
cadmium, 52
caffeine, 12, 14, 22, 36
calcium, 15, 20-22, 26, 43, 49-52
calcium antagonists, 27-30, 32-34, 39, 42, 44-47, 49-51
captopril, 47
carbohydrate, 22
cardiac failure (see heart failure)
cardiovascular disease, 8, 11, 14, 16-17, 19-21, 23, 39, 41, 45, 47
cardiovascular risk, 9, 11, 13-14, 16, 18, 20-21, 23, 41, 44-45, 47
carvedilol, 30, 47
cerebral infarction, 46
cerebrovascular disease, 14, 46
cholesterol, 15, 20, 26, 50
cigarette smoking (see smoking)
classification (of blood pressure levels), 11-12, 16, 18
clonidine, 33, 51
cocaine, 33, 36, 51
combination drugs, 1, 23, 28, 34
coronary artery disease, 22, 46, 52
coronary heart disease (CHD), 3, 5, 14, 21-23, 45-47, 49-50
corticosteroids, 50
creatinine, 15, 30, 48
cromolyn, 50
Cushing syndrome, 15
cyclosporine, 30, 33-34, 36, 51
depression, 26, 29-30
diabetes, 14, 16-17, 20-21, 30, 32, 41, 49, 52
diagnostic procedures, 14-15
diastolic dysfunction, 47
diet, 8, 19-22, 50
dietary fat (see fat)
digoxin, 33, 47
diltiazem, 29-30, 33, 46
diuretics, 1, 22, 26, 28-30, 32-34, 39, 42-52
dose (dosage) of antihypertensive medication, 23, 26-27, 31, 35, 45, 52
drug resistance (see resistance to drugs)
dyslipidemia, 14, 16, 20, 22, 30, 49
echocardiography, 15, 47
eclampsia, 31, 38, 43
edema, 15, 27, 29, 38, 43, 48
electrocardiogram, 15, 47
encephalopathy, hypertensive, 38
end-stage renal disease (ESRD), 5-7, 41, 45, 51
erthropoietin, 36, 51-52
estrogen, 44
exercise, 21, 26, 37, 42, 49
fat, 14, 20, 22, 49
felodipine, 30, 33, 47
fibrinolytic agents, 46
funduscopic examination, 15
furosemide, 33-34
garlic, 22
genetics of hypertension, 15, 18
goal (of therapy or treatment), 16-17, 19, 32, 35, 37-39, 42-43, 45-46, 48, 50
goal blood pressure, 16, 37-38, 42, 45, 52
gout, 14, 30, 50-51
heart attack (see myocardial infarction)
heart disease (see cardiovascular disease and coronary heart disease)
heart failure, 5-7, 9, 14, 16-17, 20, 23, 26, 29-32, 39, 45-47, 52
HEDIS, 34
histamine, 50
hormone replacement therapy, 44
hydralazine, 29, 46-47
hydrochlorothiazide, 23, 45
hyperkalemia, 22, 26-27, 33, 48
hyperparathyroidism, 15, 48
hypertensive emergencies, 31, 38-39
hypertensive urgencies, 38-39
hyperuricemia, 50-51
hypotension, 14, 26-27, 31, 37, 44-46, 49
illicit drugs, 14, 36
immunosuppressive agents (see also tacrolimus and cyclosporine), 51
indications, compelling, 1, 30, 35, 39, 42
indications, specific, 35, 39, 42
insulin, 36, 49
intracranial hemorrhage, 38
ipratropium, 50
ischemic events, 29, 48, 51
ischemic stroke, 46, 51
isolated systolic hypertension, 8, 11, 30, 32, 37, 45
isosorbide dinitrate, 47
J-curve, 37
kinin, 50
labetalol, 30
laboratory tests, 14-16, 18, 34, 37
lead, 52
left atrial hypertrophy, 47
left ventricular hypertrophy (LVH), 14-15, 21, 46-47
lifestyle modifications, 1, 9, 16, 17, 19-23, 35-39, 41-42, 45, 47, 49-50
loop diuretics, 26, 39, 48, 50
losartan, 30, 47
magnesium, 20, 22, 26
managed care, 1, 34
measurement (of blood pressure), 1, 12-14, 18, 35, 37, 43, 45, 49
medical history, 14-16, 18
methyldopa, 30, 43
metolazone, 29, 48
mineralocorticoids, 52
minoxidil, 29, 47
monitors (blood pressure), 12-14
monoamine oxidase inhibitors, 52
myocardial infarction, 16, 29-32, 38, 42, 46-47, 50
myocardial ischemia, 39, 51
National Heart, Lung, and Blood Institute (NHLBI), 3
National High Blood Pressure Education Program (NHBPPEP), 3
nephropathy, 16, 29, 42, 48-49
nephrocalcinosis, 36, 47
nicotine, 23
nifedipine, 29, 39
nitrendipine, 45
nitroglycerin, 51
NSAIDs, 33-34
obesity, 16, 36, 41-42, 49
omega-3 fatty acids, 22
oral contraceptives, 36, 42-43
osteoporosis, 21, 30
parenteral drugs, 31, 39, 51
peripheral adrenergic blockers (see adrenergic antagonists)
peripheral arterial disease, 16, 47
peripheral vascular disease, 14, 30
physiologic agents, 27-28, 31
physical activity, 14, 16, 20-21, 42, 50
potassium, 15, 20-22, 48, 51
potassium-sparing agents, 26, 30, 48
preeclampsia, 43-44
pregnancy, 30, 42-44
progestogen, 44
propranolol, 51
proteinuria, 29-30, 43, 48, 52
pseudohypertension (see white-coat hypertension)
pulmonary edema (see edema)
pulse pressure, 37, 45
quality of life, 8, 29
renal disease, 14, 23, 44, 47-48
renal failure, 29, 34, 39, 43, 48-49, 51
renin, 15, 34
reserpine, 29
resistance to drugs, 14, 21, 37-38, 45, 48
retinopathy, 15-16
risk stratification, 16-18
salt (see sodium)
self-measurement, 1, 12
sexual dysfunction, 14
sleep apnea, 36, 50
smoking, 12, 14, 16, 20, 23, 36, 41-42
sodium, 14, 19-29, 22, 42, 45, 47, 50
sphygmanometers, 12-13
statins, 50
step-down therapy, 21, 35
steroids, 33, 36, 42, 51-52
stroke, 3-5, 37, 44, 21, 23, 34-35, 39, 41, 45-46
surgery, 51
systolic dysfunction, 27, 29-30, 42, 46
systolic hypertension (see isolated systolic hypertension)
tachycardia, 27, 31, 46, 51
tacrolimus, 36, 51
target organ damage, 9, 14-17, 23, 35, 37-39, 41, 45, 47
thiazide diuretics, 34, 45, 48, 50
thyroid-stimulating hormone, 15
timolol, 50
tobacco, 14, 23, 36
urinalysis, 15, 48
valvular heart disease, 21
vasodilators, 27, 29, 31, 44, 46, 51
verapamil, 29-30, 46
weight, 20-21, 23, 45, 47, 49
white-coat hypertension, 12, 14, 36, 45
High Blood Pressure Reports and Materials
From the National Heart, Lung, and Blood Institute

Contact the NHLBI Information Center for the price and availability of the publications listed below.

NHLBI Information Center
P.O. Box 30105
Bethesda, MD 20824-0105
Telephone: (301) 251-1222
Fax: (301) 251-1223

Update of the Task Force Report on High Blood Pressure in Children and Adolescents. Includes revised normative blood pressure charts based on height percentiles, age, and gender beginning at 1 year of age. Also includes new charts for selecting antihypertensive drug therapy. (#3790)


Working Group Report on Hypertension in Diabetes. Guides clinicians in the care of persons with hypertension and diabetes. Addresses epidemiological, diagnostic, and clinical considerations as well as special concerns, such as kidney disease, sexual dysfunction, obesity, and pregnancy. (#3530)

Controlling High Blood Pressure in Older Women: Clinical Reference Manual. Assists clinicians in the care of older patients with high blood pressure, especially women. Presents the benefits of antihypertensive therapy, detection, evaluation, and treatment strategies. Includes charts to help clinicians improve patient adherence to therapy and select antihypertensive drug therapy. (#55-851)

1995 Update of the Working Group Reports on Chronic Renal Failure and Renovascular Hypertension. Alerts clinicians to the increasing annual incidence of end-stage renal disease (ESRD) and reviews the current knowledge about high blood pressure and chronic renal failure. Discusses therapeutic strategies to reduce the risk of ESRD, hypertensive nephrosclerosis, diabetes, and other forms of chronic renal failure. (#3791)

Enhance Your Patient Education With NHLBI High Blood Pressure Materials

High Blood Pressure: Treat It for Life. Helps patients take action against high blood pressure, including losing weight if overweight, increasing physical activity, choosing foods lower in salt and sodium, limiting alcohol, and taking medication as prescribed. Includes a sample walking program, menu ideas, and recipes. (#3312)

Eat Right To Help Lower Your High Blood Pressure. Presents practical information in an easy-to-read (5th-grade level) conversational text brochure featuring large type and colorful illustrations. Helps patients reduce high blood pressure by losing weight, being more active, drinking less alcohol, and using less salt and sodium. (#3289)

Controlling High Blood Pressure: A Woman’s Guide. Explains how high blood pressure affects women’s health and describes the simple steps used to prevent and control high blood pressure as well as the types of medication used to treat the condition. Includes a handy table of generic names of blood pressure medications and a chart for recording blood pressure readings. (#55-820)
Healthy Heart Handbook for Women. Tells women of all ages (both with and without heart disease) how to take action to make their hearts healthier. Discusses how to talk to the doctor, blood pressure and blood cholesterol, physical activity, weight loss, hormone replacement therapy, heart attack symptoms, heart-healthy eating, and more. (#2720)

Exercise and Your Heart—A Guide to Physical Activity. Provides patients with information on the effects of physical activity on their heart, and practical guidelines for starting and staying on their own exercise program. Discusses the benefits, risks, and common myths about exercise and includes tips and sample activity programs. (#1677)

Facts About How To Prevent High Blood Pressure. Describes what high blood pressure is and what happens when blood pressure is high. Includes information on the steps to take to prevent high blood pressure including a sample walking program, food selection and preparation tips, and weight control. (#3281)

Stay Up-to-Date Online
- Learn of new publications as they become available by joining our Listserv. To join:
  1. Address an e-mail message to LISTSERV@LIST.NIH.GOV. No subject is necessary.
  2. In the body of the message, type SUBSCRIBE NHLBIINFO-L.
  3. A confirmation will be sent to you. When the confirmation is received, send a reply message and type OK in the body of the reply.

Also for Your Patients
The NHLBI Information Center offers a toll-free service (1-800-575-WELL) that features messages in Spanish or English about the prevention of high blood pressure and high blood cholesterol. The service allows callers to leave their name and address if they would like to receive additional information on these topics by mail.