Accessible Search Form           Advanced Search

  • PRINT  | 

Han Wen, Ph.D.

Laboratory of Imaging Physics

Han Wen, Ph.D.
Senior Investigator
Laboratory of Imaging Physics


Building 10 Room B1D523
10 Center Dr
Bethesda, MD 20892
P: +1 301 496 2694
F: +1 301 402 2389
wenh@nhlbi.nih.gov


Background

Han Wen graduated from Peking University in Beijing with a B.S. in physics in 1989 and earned his Ph.D. in physics from the University of Maryland in 1994 through the CUSPEA Scholarship. He joined the NIH in 1995 as a staff fellow. He has been an Investigator since 1997 and a Senior Investigator since 2006. Dr. Wen has contributed to more than 60 papers and book chapters. He serves as reviewer and associate editor for numerous journals and was on the editorial board of Magnetic Resonance in Medicine from 2005 to 2011. He is also a member of the Optical Society of America, International Society of Magnetic Resonance in Medicine. Dr. Wen holds 5 patents for inventions and methods generated from his work.

Research Interests

Whether through ultrasound, x-rays, or magnetic resonance imaging (MRI), the ability to peer noninvasively into the human body has been an enormous boon to medicine. Nevertheless, currently available diagnostics suffer from several limiting factors. Dr. Wen’s primary research focus is the development of biomedical imaging and microscopy technologies. He applies his training in physics to engineer novel solutions to challenges in medical imaging.

Dr. Wen and his colleagues focus on improving the information available in x-ray images at much lower levels of radiation than currently applied. X-ray imaging is relatively inexpensive, robust, and adaptable to almost any environment (e.g. mobile imaging stations), but the use of ionizing radiation can pose health risks. In the last decade, the number of computed tomography (CT) x-ray scans ordered yearly has nearly doubled, and there is a measurable increase in the risk of cancer associated with the CT scans. Dr. Wen’s laboratory is developing phase-sensitive x-ray imaging to achieve the same image quality but at safer doses. Whereas conventional x-ray imaging technologies rely on the “shadow” left by x-rays that have been absorbed by high-density tissues in the body, phase-sensitive imaging detects and takes advantage of x-rays that have been bent and scattered. He and his colleagues tackled the question of how to detect x-ray bending and scattering accurately in the typical scan times of diagnostic imaging, which are seconds or shorter. They created solutions that allowed them to perform the first such phase-sensitive imaging studies in live animals.

Whereas the principles of phase-sensitive x-ray detection are similar to those already adopted for light microscopy, a key challenge lies in the design of the instrument, which relies heavily on nanofabrication to scale traditional optical components to the sizes required for manipulating much tinier electromagnetic wavelengths; such components would be used to split x-ray beams with wavelengths of a fraction of an angstrom. Dr. Wen is working with collaborators including experts in nanofabrication at the National Institute of Standards and Technology to develop the necessary components. They created gratings with 200 nanometer intervals, several-fold smaller than current designs. These components allowed his team to measure the bending of an x-ray beam by biological specimens down to sub nanoradian angles. Such sensitivity was only possible for x-ray beams of extremely narrow bandwidths before their work.

Dr. Wen also has a longstanding interest in MRI. He and his colleagues previously developed a protocol to measure the function of the myocardium at very high spatial resolution. This technology has since been licensed and used in clinical laboratories. The sensitivity of the technology has allowed his clinical collaborators to detect early signs of weakening myocardial function in patients with type II diabetes. Dr. Wen’s laboratory also worked on a technique to improve diffusion MRI to eliminate motion artifacts introduced by breathing and heartbeat. Diffusion MRI is being studied for its ability to detect edema or swelling of the heart muscle following an injury or heart attack. However, because diffusion MRI relies on microscopic Brownian motion of water molecules, the signal is obscured by large motions of the body. Dr. Wen and his colleagues have developed an image processing protocol that provides enhanced images of the liver and heart. They are now supporting the efforts of their collaborators in its clinical application and further study.

In addition to his interest in diagnostic applications, Dr. Wen is also interested in basic discovery research with broad potential. In the 1990s, he and his colleagues explored the use of three-dimensional Hall-effect imaging, an ultrasonic method for noninvasively mapping the passive electrical properties of tissues. This research has recently been adopted for use by several laboratories, as technological advances have made it more feasible in application. He studied extensively the behavior of electromagnetic wave propagation in the human body in the context of high field MRI and contributed to our understanding of the benefit and challenges of high field MRI today.

Selected Publications

Motionless phase stepping in X-ray phase contrast imaging with a compact source.
Miao H, Chen L, Bennett EE, Adamo NM, Gomella AA, Deluca AM, Patel A, Morgan NY, Wen H.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19268-72.
[Text Abstract on PubMed]

Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings.
Wen H, Gomella AA, Patel A, Lynch SK, Morgan NY, Anderson SA, Bennett EE, Xiao X, Liu C, Wolfe DE.
Nat Commun. 2013 Nov 5;4:2659.
[Text Abstract on PubMed]

Fourier X-ray scattering radiography yields bone structural information.
Wen H, Bennett EE, Hegedus MM, Rapacchi S.
Radiology. 2009 Jun;251(3):910-8.
[Text Abstract on PubMed]

Spatial harmonic imaging of X-ray scattering--initial results.
Wen H, Bennett EE, Hegedus MM, Carroll SC.
IEEE Trans Med Imaging. 2008 Aug;27(8):997-1002.
[Text Abstract on PubMed]

The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T.
Wen H, Denison TJ, Singerman RW, Balaban RS.
J. Magn. Reson. 1997 Mar;125(1):65-71.
[Text Abstract on PubMed]

Han Wen's Full List of Publications

DIR News
March 12, 2014
Researchers find reason why many vein grafts fail
January 29, 2014
Correlative super-resolution fluorescence and transmission electron microscopyExternal link Disclaimer
December 23, 2013
President Obama honors outstanding early-career scientists
November 25, 2013
AAAS council elects 388 new AAAS FellowsExternal link Disclaimer
November 21, 2013
A new multilayer-based x-ray grating

View all DIR News

Last Updated: January 06, 2014

Twitter iconTwitter         Facebook iconFacebook         YouTube iconYouTube        Google+ iconGoogle+