Accessible Search Form           Advanced Search

  • PRINT  | 

Justin Taraska, Ph.D.

Laboratory of Molecular and Cellular Imaging

Justin Taraska, Ph.D.
Investigator
Laboratory of Molecular and Cellular Imaging


Building 50 Room 3312
50 South Dr
Bethesda, MD 20892
P: +1 301 496 3002
justin.taraska@nih.gov

Background

Justin Taraska received his B.A. in biology from Reed College in 1999 and earned his Ph.D. in cell biology from Oregon Health and Science University in 2004 in the laboratory of Wolfhard Almers. He conducted his postdoctoral research in the laboratory of William Zagotta at the University of Washington during which time he received a Jane Coffin Child Memorial Fellowship. In 2010, Dr. Taraska became a tenure-track Investigator at the NHLBI. Dr. Taraska is a 2012 PECASE recipient, the highest honor bestowed by the U.S. government on outstanding scientists and engineers beginning their independent careers. Dr. Taraska is a member of the Biophysical Society and the American Society for Cell Biology. He is also the co-director of the analytical and quantitative light microscopy course (AQLM) at the Marine Biological Lab in Woods Hole, MA.

Research Interests

Every living cell ingests and extrudes material by recycling part of its membrane to form vesicles that are internalized (endocytosis) or externalized (exocytosis). These processes are broadly important and carefully regulated in all cell types, but in electrically active cells like neurons, they form the basis for rapid intercellular communication (synaptic transmission) and are therefore under precise temporal control. Dysfunctions in synaptic transmission contribute to several neurologic disorders. Dr. Taraska studies how vesicles fuse with and are recaptured from the cell surface in excitable cells; he seeks to identify the proteins that control these processes and determine their impact on human health and disease.

Researchers have studied the proteins that underlie these fundamental processes primarily at two levels. On the one hand, beautiful static crystal structures reveal atomic scale information about individual proteins and their interactions; on the other, genetic manipulations combined with cell physiologic assays reveal the importance of particular proteins to exo- and endocytic subprocesses. Dr. Taraska aims to bridge these two levels of analysis to visualize how protein machines dynamically rearrange and move within a living cell. Through a multi-disciplinary approach, he hopes to reveal how individual molecular machines work in a complex cellular environment.

Focusing on techniques that utilize fluorescence as a reporter for the structure and activity of proteins, Dr. Taraska images the molecular behavior of proteins. These techniques include spectral microscopy, single molecule analysis, fluorescence resonance energy transfer, fluorometry, total internal reflection fluorescence microscopy, and electrophysiology. In parallel, using evanescent field, spectral, and confocal microscopy, he images the behavior of individual vesicles in real time.

His recent work has focused on the moments following vesicle fusion to the membrane to identify how proteins on the cell surface are gathering up the fused material and bringing it back in to the cell. During synaptic transmission, this rapid recycling process is critical to continued proper functioning of the cell. Dr. Taraska uses fluorescence imaging of individual candidate proteins in living cells to discern their kinetics and dynamics in relation to the recycling process.

Fluorescence tagging typically only represents a single pair of points on a highly complex protein. Dr. Taraska has been decorating proteins at multiple points with pairs of fluorescent tags to map the entire surface of the protein. The resulting matrix of distances can be used to model changes in protein conformation. Dr. Taraska hopes approaches such as these will one day reveal the entire molecular topology of the plasma membrane at an atomic level, so that regulation of cellular process like synaptic transmission—and ultimately, physiology processes like learning and memory—can be understood and manipulated at the atomic level.

Selected Publications

Systematic spatial mapping of proteins at exocytic and endocytic structures.
Larson BT, Sochacki KA, Kindem JM, Taraska JW.
Mol Biol Cell. 2014 Jul 1;25(13):2084-93.
[Text Abstract on PubMed]

Correlative super-resolution fluorescence and metal-replica transmission electron microscopy.
Sochacki KA, Shtengel G, van Engelenburg SB, Hess HF, Taraska JW.
Nat Methods. 2014 Jan 29.
[Text Abstract on PubMed]

Accurate high-throughput structure mapping and prediction with transition metal ion FRET.
Yu X, Wu X, Bermejo GA, Brooks BR, Taraska JW.
Structure. 2013 Jan 8;21(1):9-19.
[Text Abstract on PubMed]

Imaging the post-fusion release and capture of a vesicle membrane protein.
Sochacki KA, Larson BT, Sengupta DC, Daniels MP, Shtengel G, Hess HF, Taraska JW.
Nat Commun. 2012;3:1154.
[Text Abstract on PubMed]

Mapping the structure and conformational movements of proteins with transition metal ion FRET.
Taraska JW, Puljung MC, Olivier NB, Flynn GE, Zagotta WN.
Nat. Methods. 2009 Jul;6(7):532-7.
[Text Abstract on PubMed]

Justin Taraska's Full List of Publications

DIR News
July 16, 2014
We are genetically linked to our friendsExternal link Disclaimer
July 11, 2014
NHLBI funds development of a bioresorbable scaffold for pediatric pulmonary artery stenosisExternal link Disclaimer
June 13, 2014
NIH scientists take totally tubular journey through brain cells
May 15, 2014
Reprogrammed cells slow to grow tumours in monkeysExternal link Disclaimer

View all DIR News

Last Updated: July 23, 2014

Twitter iconTwitter         Facebook iconFacebook         YouTube iconYouTube        Google+ iconGoogle+