Accessible Search Form           Advanced Search

Edward D. Korn, Ph.D.

Publications


Principal Investigator thumbnail image

Edward D. Korn
Senior Investigator

P: +1 301 496 1616
F: +1 301 402 1519
korned2@nhlbi.nih.gov


Full Publications Listing

Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2.
Liu X, Lee DY, Cai S, Yu S, Shu S, Levine RL, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2013 Jan 2;110(1):E23-32.
[Text Abstract on PubMed]

Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece.
Liu X, Hong MS, Shu S, Yu S, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2013 Jan 2;110(1):E33-40.
[Text Abstract on PubMed]

Molecular basis of dynamic relocalization of Dictyostelium myosin IB.
Brzeska H, Guag J, Preston GM, Titus MA, Korn ED.
J. Biol. Chem. 2012 Apr 27;287(18):14923-36.
[Text Abstract on PubMed]

Actin cross-linking proteins cortexillin I and II are required for cAMP signaling during Dictyostelium chemotaxis and development.
Shu S, Liu X, Kriebel PW, Daniels MP, Korn ED.
Mol. Biol. Cell. 2012 Jan;23(2):390-400.
[Text Abstract on PubMed]

Expression of Y53A-actin in Dictyostelium disrupts the cytoskeleton and inhibits intracellular and intercellular chemotactic signaling.
Shu S, Liu X, Kriebel PW, Hong MS, Daniels MP, Parent CA, Korn ED.
J. Biol. Chem. 2010 Sep 3;285(36):27713-25.
[Text Abstract on PubMed]

Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft.
Liu X, Shu S, Hong MS, Yu B, Korn ED.
J. Biol. Chem. 2010 Mar 26;285(13):9729-39.
[Text Abstract on PubMed]

An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL.
Brzeska H, Guag J, Remmert K, Chacko S, Korn ED.
J. Biol. Chem. 2010 Feb 19;285(8):5738-47.
[Text Abstract on PubMed]

Acanthamoeba myosin IC colocalizes with phosphatidylinositol 4,5-bisphosphate at the plasma membrane due to the high concentration of negative charge.
Brzeska H, Hwang KJ, Korn ED.
J. Biol. Chem. 2008 Nov 14;283(46):32014-23.
[Text Abstract on PubMed]

Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding.
Baek K, Liu X, Ferron F, Shu S, Korn ED, Dominguez R.
Proc. Natl. Acad. Sci. U.S.A. 2008 Aug 19;105(33):11748-53.
[Text Abstract on PubMed]

Intramolecular interaction in the tail of Acanthamoeba myosin IC between the SH3 domain and a putative pleckstrin homology domain.
Hwang KJ, Mahmoodian F, Ferretti JA, Korn ED, Gruschus JM.
Proc. Natl. Acad. Sci. U.S.A. 2007 Jan 16;104(3):784-9.
[Text Abstract on PubMed]

S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration.
Shu S, Mahadeo DC, Liu X, Liu W, Parent CA, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2006 Dec 26;103(52):19788-93.
[Text Abstract on PubMed]

Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments.
Liu X, Shu S, Hong MS, Levine RL, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2006 Sep 12;103(37):13694-9.
[Text Abstract on PubMed]

Activation of myosin in HeLa cells causes redistribution of focal adhesions and F-actin from cell center to cell periphery.
Szczepanowska J, Korn ED, Brzeska H.
Cell Motil. Cytoskeleton. 2006 Jun;63(6):356-74.
[Text Abstract on PubMed]

Biological, biochemical, and kinetic effects of mutations of the cardiomyopathy loop of Dictyostelium myosin II: importance of ALA400.
Liu X, Shu S, Kovács M, Korn ED.
J. Biol. Chem. 2005 Jul 22;280(29):26974-83.
[Text Abstract on PubMed]

Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium.
Shu S, Liu X, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2005 Feb 1;102(5):1472-7.
[Text Abstract on PubMed]

Subdomain organization of the Acanthamoeba myosin IC tail from cryo-electron microscopy.
Ishikawa T, Cheng N, Liu X, Korn ED, Steven AC.
Proc. Natl. Acad. Sci. U.S.A. 2004 Aug 17;101(33):12189-94.
[Text Abstract on PubMed]

Rac-induced increase of phosphorylation of myosin regulatory light chain in HeLa cells.
Brzeska H, Szczepanowska J, Matsumura F, Korn ED.
Cell Motil. Cytoskeleton. 2004 Jul;58(3):186-99.
[Text Abstract on PubMed]

The discovery of unconventional myosins: serendipity or luck?
Korn ED.
J. Biol. Chem. 2004 Mar 5;279(10):8517-25.
[Text Abstract on PubMed]

Dictyostelium and Acanthamoeba myosin II assembly domains go to the cleavage furrow of Dictyostelium myosin II-null cells.
Shu S, Liu X, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2003 May 27;100(11):6499-504.
[Text Abstract on PubMed]

Dynamic localization of myosin-I to endocytic structures in Acanthamoeba.
Ostap EM, Maupin P, Doberstein SK, Baines IC, Korn ED, Pollard TD.
Cell Motil. Cytoskeleton. 2003 Jan;54(1):29-40.
[Text Abstract on PubMed]

Tail chimeras of Dictyostelium myosin II support cytokinesis and other myosin II activities but not full development.
Shu S, Liu X, Parent CA, Uyeda TQ, Korn ED.
J. Cell. Sci. 2002 Nov 15;115(Pt 22):4237-49.
[Text Abstract on PubMed]

Calmodulin-binding and autoinhibitory domains of Acanthamoeba myosin I heavy chain kinase, a p21-activated kinase (PAK).
Brzeska H, Young R, Tan C, Szczepanowska J, Korn ED.
J. Biol. Chem. 2001 Dec 14;276(50):47468-73.
[Text Abstract on PubMed]

Myosin-I nomenclature.
Gillespie PG, Albanesi JP, Bahler M, Bement WM, Berg JS, Burgess DR, Burnside B, Cheney RE, Corey DP, Coudrier E, de Lanerolle P, Hammer JA, Hasson T, Holt JR, Hudspeth AJ, Ikebe M, Kendrick-Jones J, Korn ED, Li R, Mercer JA, Milligan RA, Mooseker MS, Ostap EM, Petit C, Pollard TD, Sellers JR, Soldati T, Titus MA.
J. Cell Biol. 2001 Nov 26;155(5):703-4.
[Text Abstract on PubMed]

Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s).
Liu X, Osherov N, Yamashita R, Brzeska H, Korn ED, May GS.
Proc. Natl. Acad. Sci. U.S.A. 2001 Jul 31;98(16):9122-7.
[Text Abstract on PubMed]

Chimeras of Dictyostelium myosin II head and neck domains with Acanthamoeba or chicken smooth muscle myosin II tail domain have greatly increased and unregulated actin-dependent MgATPase activity.
Liu X, Shu S, Yamashita RA, Xu Y, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2000 Nov 7;97(23):12553-8.
[Text Abstract on PubMed]

Coevolution of head, neck, and tail domains of myosin heavy chains.
Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2000 Nov 7;97(23):12559-64.
[Text Abstract on PubMed]

Functional analysis of tail domains of Acanthamoeba myosin IC by characterization of truncation and deletion mutants.
Liu X, Brzeska H, Korn ED.
J. Biol. Chem. 2000 Aug 11;275(32):24886-92.
[Text Abstract on PubMed]

Flexibility of Acanthamoeba myosin rod minifilaments.
Redowicz MJ, Hammer, Bowers B, Zolkiewski M, Ginsburg A, Korn ED, Rau DC.
Biochemistry. 1999 Jun 1;38(22):7243-52.
[Text Abstract on PubMed]

Myosin I heavy chain kinase: cloning of the full-length gene and acidic lipid-dependent activation by Rac and Cdc42.
Brzeska H, Young R, Knaus U, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 1999 Jan 19;96(2):394-9.
[Text Abstract on PubMed]

Analysis of the regulatory phosphorylation site in Acanthamoeba myosin IC by using site-directed mutagenesis.
Wang ZY, Wang F, Sellers JR, Korn ED, Hammer.
Proc. Natl. Acad. Sci. U.S.A. 1998 Dec 22;95(26):15200-5.
[Text Abstract on PubMed]

Structural invariance of constitutively active and inactive mutants of acanthamoeba myosin IC bound to F-actin in the rigor and ADP-bound states.
Carragher BO, Cheng N, Wang ZY, Korn ED, Reilein A, Belnap DM, Hammer, Steven AC.
Proc. Natl. Acad. Sci. U.S.A. 1998 Dec 22;95(26):15206-11.
[Text Abstract on PubMed]

Effect of mutating the regulatory phosphoserine and conserved threonine on the activity of the expressed catalytic domain of Acanthamoeba myosin I heavy chain kinase.
Szczepanowska J, Ramachandran U, Herring CJ, Gruschus JM, Qin J, Korn ED, Brzeska H.
Proc. Natl. Acad. Sci. U.S.A. 1998 Apr 14;95(8):4146-51.
[Text Abstract on PubMed]

Localization of actobindin, profilin I, profilin II, and phosphatidylinositol-4,5-bisphosphate (PIP2) in Acanthamoeba castellanii.
Bubb MR, Baines IC, Korn ED.
Cell Motil. Cytoskeleton. 1998;39(2):134-46.
[Text Abstract on PubMed]

Identification by mass spectrometry of the phosphorylated residue responsible for activation of the catalytic domain of myosin I heavy chain kinase, a member of the PAK/STE20 family.
Szczepanowska J, Zhang X, Herring CJ, Qin J, Korn ED, Brzeska H.
Proc. Natl. Acad. Sci. U.S.A. 1997 Aug 5;94(16):8503-8.
[Text Abstract on PubMed]

Two-state thermal unfolding of a long dimeric coiled-coil: the Acanthamoeba myosin II rod.
Zolkiewski M, Redowicz MJ, Korn ED, Hammer, Ginsburg A.
Biochemistry. 1997 Jun 24;36(25):7876-83.
[Text Abstract on PubMed]

The amino acid sequence of the light chain of Acanthamoeba myosin IC.
Wang ZY, Sakai J, Matsudaira PT, Baines IC, Sellers JR, Hammer, Korn ED.
J. Muscle Res. Cell. Motil. 1997 Jun;18(3):395-8.
[Text Abstract on PubMed]

p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I.
Brzeska H, Knaus UG, Wang ZY, Bokoch GM, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 1997 Feb 18;94(4):1092-5.
[Text Abstract on PubMed]

The catalytic domain of Acanthamoeba myosin I heavy chain kinase. I. Identification and characterization following tryptic cleavage of the native enzyme.
Brzeska H, Martin BM, Korn ED.
J. Biol. Chem. 1996 Oct 25;271(43):27049-55.
[Text Abstract on PubMed]

The catalytic domain of acanthamoeba myosin I heavy chain kinase. II. Expression of active catalytic domain and sequence homology to p21-activated kinase (PAK).
Brzeska H, Szczepanowska J, Hoey J, Korn ED.
J. Biol. Chem. 1996 Oct 25;271(43):27056-62.
[Text Abstract on PubMed]

Ca2+ bound to the high affinity divalent cation-binding site of actin enhances actophorin-induced depolymerization of muscle F-actin but inhibits actophorin-induced depolymerization of Acanthamoeba F-actin.
Mossakowska M, Korn ED.
J. Muscle Res. Cell. Motil. 1996 Aug;17(4):383-9.
[Text Abstract on PubMed]

Regulation of Class I and Class II Myosins by Heavy Chain Phosphorylation
Brzeska, Korn.
J. Biol. Chem. 1996 Jul 19;271(29):16986.
[Text Abstract on PubMed]

Regulation of class I and class II myosins by heavy chain phosphorylation.
Brzeska H, Korn ED.
J. Biol. Chem. 1996 Jul 19;271(29):16983-6.
[Text Abstract on PubMed]

Nucleotides increase the internal flexibility of filaments of dephosphorylated Acanthamoeba myosin II.
Redowicz MJ, Korn ED, Rau DC.
J. Biol. Chem. 1996 May 24;271(21):12401-7.
[Text Abstract on PubMed]

Thermal unfolding of Acanthamoeba myosin II and skeletal muscle myosin.
Zolkiewski M, Redowicz MJ, Korn ED, Ginsburg A.
Biophys. Chem. 1996 Apr 16;59(3):365-71.
[Text Abstract on PubMed]

Properties of Acanthamoeba myosin I heavy chain kinase bound to phospholipid vesicles.
Wang ZY, Brzeska H, Baines IC, Korn ED.
J. Biol. Chem. 1995 Nov 17;270(46):27969-76.
[Text Abstract on PubMed]

Quantification and localization of phosphorylated myosin I isoforms in Acanthamoeba castellanii.
Baines IC, Corigliano-Murphy A, Korn ED.
J. Cell Biol. 1995 Aug;130(3):591-603.
[Text Abstract on PubMed]

Thermally induced unfolding of Acanthamoeba myosin II and skeletal muscle myosin: nucleotide effects.
Zolkiewski M, Redowicz MJ, Korn ED, Ginsburg A.
Arch. Biochem. Biophys. 1995 Apr 1;318(1):207-14.
[Text Abstract on PubMed]

Kinetic model for the inhibition of actin polymerization by actobindin.
Bubb MR, Korn ED.
Biochemistry. 1995 Mar 28;34(12):3921-6.
[Text Abstract on PubMed]

Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments.
Bubb MR, Spector I, Bershadsky AD, Korn ED.
J. Biol. Chem. 1995 Feb 24;270(8):3463-6.
[Text Abstract on PubMed]

Actobindin binds with high affinity to a covalently cross-linked actin dimer.
Bubb MR, Lewis MS, Korn ED.
J. Biol. Chem. 1994 Oct 14;269(41):25587-91.
[Text Abstract on PubMed]

Actobindin induces the accumulation of actin dimers that neither nucleate polymerization nor self-associate.
Bubb MR, Knutson JR, Porter DK, Korn ED.
J. Biol. Chem. 1994 Oct 14;269(41):25592-7.
[Text Abstract on PubMed]

Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin.
Bubb MR, Senderowicz AM, Sausville EA, Duncan KL, Korn ED.
J. Biol. Chem. 1994 May 27;269(21):14869-71.
[Text Abstract on PubMed]

Effects of phosphorylation and nucleotides on the conformation of myosin II from Acanthamoeba castellanii.
Redowicz MJ, Martin B, Zolkiewski M, Ginsburg A, Korn ED.
J. Biol. Chem. 1994 May 6;269(18):13558-63.
[Text Abstract on PubMed]

Rabbit skeletal muscle actin behaves differently than Acanthamoeba actin when added to soluble extracts of Acanthamoeba castellanii.
Holliday LS, Bubb MR, Korn ED.
Biochem. Biophys. Res. Commun. 1993 Oct 29;196(2):569-75.
[Text Abstract on PubMed]

Inhibition of contractile vacuole function in vivo by antibodies against myosin-I.
Doberstein SK, Baines IC, Wiegand G, Korn ED, Pollard TD.
Nature. 1993 Oct 28;365(6449):841-3.
[Text Abstract on PubMed]

Autophosphorylation-independent activation of Acanthamoeba myosin I heavy chain kinase by plasma membranes.
Kulesza-Lipka D, Brzeska H, Baines IC, Korn ED.
J. Biol. Chem. 1993 Aug 25;268(24):17995-8001.
[Text Abstract on PubMed]

A structural difference between filaments of phosphorylated and dephosphorylated Acanthamoeba myosin II revealed by electric birefringence.
Rau DC, Ganguly C, Korn ED.
J. Biol. Chem. 1993 Mar 5;268(7):4612-24.
[Text Abstract on PubMed]

Differential localization of Acanthamoeba myosin I isoforms.
Baines IC, Brzeska H, Korn ED.
J. Cell Biol. 1992 Dec;119(5):1193-203.
[Text Abstract on PubMed]

Inhibition of Acanthamoeba myosin I heavy chain kinase by Ca(2+)-calmodulin.
Brzeska H, Kulesza-Lipka D, Korn ED.
J. Biol. Chem. 1992 Nov 25;267(33):23870-5.
[Text Abstract on PubMed]

Regulation of the actin-activated ATPase and in vitro motility activities of monomeric and filamentous Acanthamoeba myosin II.
Ganguly C, Baines IC, Korn ED, Sellers J.
J. Biol. Chem. 1992 Oct 15;267(29):20900-4.
[Text Abstract on PubMed]

Limited proteolysis reveals a structural difference in the globular head domains of dephosphorylated and phosphorylated Acanthamoeba myosin II.
Ganguly C, Martin B, Bubb M, Korn ED.
J. Biol. Chem. 1992 Oct 15;267(29):20905-8.
[Text Abstract on PubMed]

Preparation of a phospholipid-insensitive, autophosphorylation-activated catalytic fragment of Acanthamoeba myosin I heavy chain kinase.
Brzeska H, Martin B, Kulesza-Lipka D, Baines I, Korn ED.
J. Biol. Chem. 1992 Mar 5;267(7):4949-56.
[Text Abstract on PubMed]

Immunolocalization of myosin I heavy chain kinase in Acanthamoeba castellanii and binding of purified kinase to isolated plasma membranes.
Kulesza-Lipka D, Baines IC, Brzeska H, Korn ED.
J. Cell Biol. 1991 Oct;115(1):109-19.
[Text Abstract on PubMed]

The interfaces of actin and Acanthamoeba actobindin. Identification of a new actin-binding motif.
Vancompernolle K, Vandekerckhove J, Bubb MR, Korn ED.
J. Biol. Chem. 1991 Aug 15;266(23):15427-31.
[Text Abstract on PubMed]

The formation of actin oligomers studied by analytical ultracentrifugation.
Attri AK, Lewis MS, Korn ED.
J. Biol. Chem. 1991 Apr 15;266(11):6815-24.
[Text Abstract on PubMed]

The interaction of monomeric actin with two binding sites on Acanthamoeba actobindin.
Bubb MR, Lewis MS, Korn ED.
J. Biol. Chem. 1991 Feb 25;266(6):3820-6.
[Text Abstract on PubMed]

Purification of actobindin from Acanthamoeba castellanii.
Bubb MR, Korn ED.
Meth. Enzymol. 1991;196:119-25.
[Text Abstract on PubMed]

Purification of myosin I and myosin I heavy chain kinase from Acanthamoeba castellanii.
Lynch TJ, Brzeska H, Baines IC, Korn ED.
Meth. Enzymol. 1991;196:12-23.
[Text Abstract on PubMed]

Localization of myosin IC and myosin II in Acanthamoeba castellanii by indirect immunofluorescence and immunogold electron microscopy.
Baines IC, Korn ED.
J. Cell Biol. 1990 Nov;111(5 Pt 1):1895-904.
[Text Abstract on PubMed]

Substrate specificity of Acanthamoeba myosin I heavy chain kinase as determined with synthetic peptides.
Brzeska H, Lynch TJ, Martin B, Corigliano-Murphy A, Korn ED.
J. Biol. Chem. 1990 Sep 25;265(27):16138-44.
[Text Abstract on PubMed]

The covalent structure of Acanthamoeba actobindin.
Vandekerckhove J, Van Damme J, Vancompernolle K, Bubb MR, Lambooy PK, Korn ED.
J. Biol. Chem. 1990 Aug 5;265(22):12801-5.
[Text Abstract on PubMed]

Regulation of the actin-activated ATPase activity of Acanthamoeba myosin II by copolymerization with phosphorylated and dephosphorylated peptides derived from the carboxyl-terminal end of the heavy chain.
Ganguly C, Atkinson MA, Attri AK, Sathyamoorthy V, Bowers B, Korn ED.
J. Biol. Chem. 1990 Jun 15;265(17):9993-8.
[Text Abstract on PubMed]

Functional consequences of the proteolytic removal of regulatory serines from the nonhelical tailpiece of Acanthamoeba myosin II.
Sathyamoorthy V, Atkinson MA, Bowers B, Korn ED.
Biochemistry. 1990 Apr 17;29(15):3793-7.
[Text Abstract on PubMed]

Acanthamoeba myosin I heavy chain kinase is activated by phosphatidylserine-enhanced phosphorylation.
Brzeska H, Lynch TJ, Korn ED.
J. Biol. Chem. 1990 Mar 5;265(7):3591-4.
[Text Abstract on PubMed]

Myosin I.
Korn ED, Hammer.
Curr. Opin. Cell Biol. 1990 Feb;2(1):57-61.
[Text Abstract on PubMed]

Purification and characterization of a third isoform of myosin I from Acanthamoeba castellanii.
Lynch TJ, Brzeska H, Miyata H, Korn ED.
J. Biol. Chem. 1989 Nov 15;264(32):19333-9.
[Text Abstract on PubMed]

The localization and sequence of the phosphorylation sites of Acanthamoeba myosins I. An improved method for locating the phosphorylated amino acid.
Brzeska H, Lynch TJ, Martin B, Korn ED.
J. Biol. Chem. 1989 Nov 15;264(32):19340-8.
[Text Abstract on PubMed]

Plasma membrane association of Acanthamoeba myosin I.
Miyata H, Bowers B, Korn ED.
J. Cell Biol. 1989 Oct;109(4 Pt 1):1519-28.
[Text Abstract on PubMed]

Myosin I is located at the leading edges of locomoting Dictyostelium amoebae.
Fukui Y, Lynch TJ, Brzeska H, Korn ED.
Nature. 1989 Sep 28;341(6240):328-31.
[Text Abstract on PubMed]

The effect of actin and phosphorylation on the tryptic cleavage pattern of Acanthamoeba myosin IA.
Brzeska H, Lynch TJ, Korn ED.
J. Biol. Chem. 1989 Jun 15;264(17):10243-50.
[Text Abstract on PubMed]

Cooperative dependence of the actin-activated Mg2+-ATPase activity of Acanthamoeba myosin II on the extent of filament phosphorylation.
Atkinson MA, Lambooy PK, Korn ED.
J. Biol. Chem. 1989 Mar 5;264(7):4127-32.
[Text Abstract on PubMed]

Inhibition of an early stage of actin polymerization by actobindin.
Lambooy PK, Korn ED.
J. Biol. Chem. 1988 Sep 15;263(26):12836-43.
[Text Abstract on PubMed]

The hydrolysis of ATP that accompanies actin polymerization is essentially irreversible.
Carlier MF, Pantaloni D, Evans JA, Lambooy PK, Korn ED, Webb MR.
FEBS Lett. 1988 Aug 1;235(1-2):211-4.
[Text Abstract on PubMed]

Enzymatic activity and filament assembly of Acanthamoeba myosin II are regulated by adjacent domains at the end of the tail.
Atkinson MA, Appella E, Corigliano-Murphy MA, Korn ED.
FEBS Lett. 1988 Jul 18;234(2):435-8.
[Text Abstract on PubMed]

Localization of the actin-binding sites of Acanthamoeba myosin IB and effect of limited proteolysis on its actin-activated Mg2+-ATPase activity.
Brzeska H, Lynch TJ, Korn ED.
J. Biol. Chem. 1988 Jan 5;263(1):427-35.
[Text Abstract on PubMed]

Structure-function studies on Acanthamoeba myosins IA, IB, and II.
Korn ED, Atkinson MA, Brzeska H, Hammer, Jung G, Lynch TJ.
J. Cell. Biochem. 1988 Jan;36(1):37-50.
[Text Abstract on PubMed]

Myosins of nonmuscle cells.
Korn ED, Hammer.
Annu Rev Biophys Biophys Chem. 1988;17:23-45.
[Text Abstract on PubMed]

Extensive purification from Acanthamoeba castellanii of a microtubule-dependent translocator with microtubule-activated Mg2+-ATPase activity.
Kachar B, Albanesi JP, Fujisaki H, Korn ED.
J. Biol. Chem. 1987 Nov 25;262(33):16180-5.
[Text Abstract on PubMed]

A model for the polymerization of Acanthamoeba myosin II and the regulation of its actin-activated Mg2+-ATPase activity.
Atkinson MA, Korn ED.
J. Biol. Chem. 1987 Nov 15;262(32):15809-11.
[Text Abstract on PubMed]

Electric birefringence study of the solution structure of chymotrypsin-cleaved Acanthamoeba myosin II.
Wijmenga SS, Atkinson MA, Rau D, Korn ED.
J. Biol. Chem. 1987 Nov 15;262(32):15803-8.
[Text Abstract on PubMed]

Actin polymerization and ATP hydrolysis.
Korn ED, Carlier MF, Pantaloni D.
Science. 1987 Oct 30;238(4827):638-44.
[Text Abstract on PubMed]

Limited tryptic digestion of Acanthamoeba myosin IA abolishes regulation of actin-activated ATPase activity by heavy chain phosphorylation.
Lynch TJ, Brzeska H, Korn ED.
J. Biol. Chem. 1987 Oct 5;262(28):13842-9.
[Text Abstract on PubMed]

The heavy chain of Acanthamoeba myosin IB is a fusion of myosin-like and non-myosin-like sequences.
Jung G, Korn ED, Hammer.
Proc. Natl. Acad. Sci. U.S.A. 1987 Oct;84(19):6720-4.
[Text Abstract on PubMed]

Complete nucleotide sequence and deduced polypeptide sequence of a nonmuscle myosin heavy chain gene from Acanthamoeba: evidence of a hinge in the rodlike tail.
Hammer, Bowers B, Paterson BM, Korn ED.
J. Cell Biol. 1987 Aug;105(2):913-25.
[Text Abstract on PubMed]

Inhibition of actin polymerization by latrunculin A.
Coué M, Brenner SL, Spector I, Korn ED.
FEBS Lett. 1987 Mar 23;213(2):316-8.
[Text Abstract on PubMed]

The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin.
Carlier MF, Pantaloni D, Korn ED.
J. Biol. Chem. 1987 Mar 5;262(7):3052-9.
[Text Abstract on PubMed]

Purification and characterization of an ATP-sensitive actin gelation protein from Acanthamoeba castellanii.
Albanesi JP, Lynch TJ, Fujisaki H, Bowers B, Korn ED.
J. Biol. Chem. 1987 Mar 5;262(7):3404-8.
[Text Abstract on PubMed]

ATPase activities and actin-binding properties of subfragments of Acanthamoeba myosin IA.
Lynch TJ, Albanesi JP, Korn ED, Robinson EA, Bowers B, Fujisaki H.
J. Biol. Chem. 1986 Dec 25;261(36):17156-62.
[Text Abstract on PubMed]

Purification and characterization of actobindin, a new actin monomer-binding protein from Acanthamoeba castellanii.
Lambooy PK, Korn ED.
J. Biol. Chem. 1986 Dec 25;261(36):17150-5.
[Text Abstract on PubMed]

The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis.
Carlier MF, Pantaloni D, Korn ED.
J. Biol. Chem. 1986 Aug 15;261(23):10785-92.
[Text Abstract on PubMed]

Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin.
Carlier MF, Pantaloni D, Korn ED.
J. Biol. Chem. 1986 Aug 15;261(23):10778-84.
[Text Abstract on PubMed]

Regulation of the actin-activated ATPase activity of Acanthamoeba myosin I by cross-linking actin filaments.
Albanesi JP, Lynch TJ, Fujisaki H, Korn ED.
J. Biol. Chem. 1986 Aug 5;261(22):10445-9.
[Text Abstract on PubMed]

Isolation and partial characterization of a 110-kD dimer actin-binding protein.
Ueno T, Korn ED.
J. Cell Biol. 1986 Aug;103(2):621-30.
[Text Abstract on PubMed]

Genetic evidence that Acanthamoeba myosin I is a true myosin.
Hammer, Jung G, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 1986 Jul;83(13):4655-9.
[Text Abstract on PubMed]

Interaction of plasma gelsolin with ADP-actin.
Coué M, Korn ED.
J. Biol. Chem. 1986 Mar 15;261(8):3628-31.
[Text Abstract on PubMed]

Effect of muscle tropomyosin on the kinetics of polymerization of muscle actin.
Lal AA, Korn ED.
Biochemistry. 1986 Mar 11;25(5):1154-8.
[Text Abstract on PubMed]

The purification and characterization of a globular subfragment of Acanthamoeba myosin II that is fully active when cross-linked to F-actin.
Atkinson MA, Korn ED.
J. Biol. Chem. 1986 Mar 5;261(7):3382-8.
[Text Abstract on PubMed]

Interaction of cytochalasin D with actin filaments in the presence of ADP and ATP.
Carlier MF, Criquet P, Pantaloni D, Korn ED.
J. Biol. Chem. 1986 Feb 15;261(5):2041-50.
[Text Abstract on PubMed]

ATP hydrolysis by the gelsolin-actin complex and at the pointed ends of gelsolin-capped filaments.
Coué M, Korn ED.
J. Biol. Chem. 1986 Feb 5;261(4):1588-93.
[Text Abstract on PubMed]

Amino acid sequence of the active site of Acanthamoeba myosin II.
Atkinson MA, Robinson EA, Appella E, Korn ED.
J. Biol. Chem. 1986 Feb 5;261(4):1844-8.
[Text Abstract on PubMed]

Isolation of a non-muscle myosin heavy chain gene from Acanthamoeba.
Hammer, Korn ED, Paterson BM.
J. Biol. Chem. 1986 Feb 5;261(4):1949-56.
[Text Abstract on PubMed]

Interaction of plasma gelsolin with G-actin and F-actin in the presence and absence of calcium ions.
Coué M, Korn ED.
J. Biol. Chem. 1985 Dec 5;260(28):15033-41.
[Text Abstract on PubMed]

Lack of NH2-terminal processing of actin from Acanthamoeba castellanii.
Redman KL, Martin DJ, Korn ED, Rubenstein PA.
J. Biol. Chem. 1985 Nov 25;260(27):14857-61.
[Text Abstract on PubMed]

Immunological characterization of phosphoprotein phosphatases.
Shacter E, McClure JA, Korn ED, Chock PB.
Arch. Biochem. Biophys. 1985 Nov 1;242(2):523-31.
[Text Abstract on PubMed]

A model for actin polymerization and the kinetic effects of ATP hydrolysis.
Pantaloni D, Hill TL, Carlier MF, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 1985 Nov;82(21):7207-11.
[Text Abstract on PubMed]

Effect of actin filament length and filament number concentration on the actin-activated ATPase activity of Acanthamoeba myosin I.
Albanesi JP, Coué M, Fujisaki H, Korn ED.
J. Biol. Chem. 1985 Oct 25;260(24):13276-80.
[Text Abstract on PubMed]

A kinetic model for the molecular basis of the contractile activity of Acanthamoeba myosins IA and IB.
Albanesi JP, Fujisaki H, Korn ED.
J. Biol. Chem. 1985 Sep 15;260(20):11174-9.
[Text Abstract on PubMed]

Experimental evidence for the contractile activities of Acanthamoeba myosins IA and IB.
Fujisaki H, Albanesi JP, Korn ED.
J. Biol. Chem. 1985 Sep 15;260(20):11183-9.
[Text Abstract on PubMed]

Reinvestigation of the inhibition of actin polymerization by profilin.
Lal AA, Korn ED.
J. Biol. Chem. 1985 Aug 25;260(18):10132-8.
[Text Abstract on PubMed]

Monomeric Acanthamoeba myosins I support movement in vitro.
Albanesi JP, Fujisaki H, Hammer, Korn ED, Jones R, Sheetz MP.
J. Biol. Chem. 1985 Jul 25;260(15):8649-52.
[Text Abstract on PubMed]

Polymerization of ADP-actin and ATP-actin under sonication and characteristics of the ATP-actin equilibrium polymer.
Carlier MF, Pantaloni D, Korn ED.
J. Biol. Chem. 1985 Jun 10;260(11):6565-71.
[Text Abstract on PubMed]

The interaction between ATP-actin and ADP-actin. A tentative model for actin polymerization.
Pantaloni D, Carlier MF, Korn ED.
J. Biol. Chem. 1985 Jun 10;260(11):6572-8.
[Text Abstract on PubMed]

Purification from Dictyostelium discoideum of a low-molecular-weight myosin that resembles myosin I from Acanthamoeba castellanii.
Côté GP, Albanesi JP, Ueno T, Hammer, Korn ED.
J. Biol. Chem. 1985 Apr 25;260(8):4543-6.
[Text Abstract on PubMed]

Filament formation and actin-activated ATPase activity are abolished by proteolytic removal of a small peptide from the tip of the tail of the heavy chain of Acanthamoeba myosin II.
Kuznicki J, Côté GP, Bowers B, Korn ED.
J. Biol. Chem. 1985 Feb 10;260(3):1967-72.
[Text Abstract on PubMed]

The amino acid sequence of Acanthamoeba profilin.
Ampe C, Vandekerckhove J, Brenner SL, Tobacman L, Korn ED.
J. Biol. Chem. 1985 Jan 25;260(2):834-40.
[Text Abstract on PubMed]

The regulation of actin and myosin by ATP.
Korn ED.
Curr. Top. Cell. Regul. 1985;26:221-32.
[Text Abstract on PubMed]

Localization of the active site and phosphorylation site of Acanthamoeba myosins IA and IB.
Albanesi JP, Fujisaki H, Korn ED.
J. Biol. Chem. 1984 Nov 25;259(22):14184-9.
[Text Abstract on PubMed]

Preparation and polymerization of skeletal muscle ADP-actin.
Lal AA, Brenner SL, Korn ED.
J. Biol. Chem. 1984 Nov 10;259(21):13061-5.
[Text Abstract on PubMed]

Amino acid sequence of a segment of the Acanthamoeba myosin II heavy chain containing all three regulatory phosphorylation sites.
Côté GP, Robinson EA, Appella E, Korn ED.
J. Biol. Chem. 1984 Oct 25;259(20):12781-7.
[Text Abstract on PubMed]

Acanthamoeba myosin IA, IB, and II heavy chains are synthesized in vitro from Acanthamoeba messenger RNA.
Hammer, Korn ED, Paterson BM.
J. Biol. Chem. 1984 Sep 25;259(18):11157-9.
[Text Abstract on PubMed]

Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state.
Carlier MF, Pantaloni D, Korn ED.
J. Biol. Chem. 1984 Aug 25;259(16):9983-6.
[Text Abstract on PubMed]

Steady state length distribution of F-actin under controlled fragmentation and mechanism of length redistribution following fragmentation.
Carlier MF, Pantaloni D, Korn ED.
J. Biol. Chem. 1984 Aug 25;259(16):9987-91.
[Text Abstract on PubMed]

Interdependence of factors affecting the actin-activated ATPase activity of myosin II from Acanthamoeba castellanii.
Kuznicki J, Korn ED.
J. Biol. Chem. 1984 Jul 25;259(14):9302-7.
[Text Abstract on PubMed]

Effects of limited tryptic cleavage on the physical and enzymatic properties of myosin II from Acanthamoeba castellanii.
Kuznicki J, Atkinson MA, Korn ED.
J. Biol. Chem. 1984 Jul 25;259(14):9308-13.
[Text Abstract on PubMed]

Rate constants for actin polymerization in ATP determined using cross-linked actin trimers as nuclei.
Lal AA, Korn ED, Brenner SL.
J. Biol. Chem. 1984 Jul 25;259(14):8794-800.
[Text Abstract on PubMed]

The critical concentration of actin in the presence of ATP increases with the number concentration of filaments and approaches the critical concentration of actin.ADP.
Pantaloni D, Carlier MF, Coué M, Lal AA, Brenner SL, Korn ED.
J. Biol. Chem. 1984 May 25;259(10):6274-83.
[Text Abstract on PubMed]

Phosphorylation and activation of smooth muscle myosin by Acanthamoeba myosin I heavy chain kinase.
Hammer, Sellers JR, Korn ED.
J. Biol. Chem. 1984 Mar 10;259(5):3224-9.
[Text Abstract on PubMed]

Evidence that F-actin can hydrolyze ATP independent of monomer-polymer end interactions.
Brenner SL, Korn ED.
J. Biol. Chem. 1984 Feb 10;259(3):1441-6.
[Text Abstract on PubMed]

Amino acid sequence of Acanthamoeba actin.
Vandekerckhove J, Lal AA, Korn ED.
J. Mol. Biol. 1984 Jan 5;172(1):141-7.
[Text Abstract on PubMed]

Purification of a protein phosphatase from Acanthamoeba that dephosphorylates and activates myosin II.
McClure JA, Korn ED.
J. Biol. Chem. 1983 Dec 10;258(23):14570-5.
[Text Abstract on PubMed]

The interaction of F-actin with phosphorylated and unphosphorylated myosins IA and IB from Acanthamoeba castellanii.
Albanesi JP, Hammer, Korn ED.
J. Biol. Chem. 1983 Aug 25;258(16):10176-81.
[Text Abstract on PubMed]

Purification and characterization of a myosin I heavy chain kinase from Acanthamoeba castellanii.
Hammer, Albanesi JP, Korn ED.
J. Biol. Chem. 1983 Aug 25;258(16):10168-75.
[Text Abstract on PubMed]

Effect of Acanthamoeba profilin on the pre-steady state kinetics of actin polymerization and on the concentration of F-actin at steady state.
Tobacman LS, Brenner SL, Korn ED.
J. Biol. Chem. 1983 Jul 25;258(14):8806-12.
[Text Abstract on PubMed]

Supramolecular regulation of the actin-activated ATPase activity of filaments of Acanthamoeba Myosin II.
Kuznicki J, Albanesi JP, Côté GP, Korn ED.
J. Biol. Chem. 1983 May 25;258(10):6011-4.
[Text Abstract on PubMed]

On the mechanism of actin monomer-polymer subunit exchange at steady state.
Brenner SL, Korn ED.
J. Biol. Chem. 1983 Apr 25;258(8):5013-20.
[Text Abstract on PubMed]

The kinetics of actin nucleation and polymerization.
Tobacman LS, Korn ED.
J. Biol. Chem. 1983 Mar 10;258(5):3207-14.
[Text Abstract on PubMed]

Kinetics of polymerization and ATP hydrolysis by covalently crosslinked actin dimer.
Mockrin SC, Korn ED.
J. Biol. Chem. 1983 Mar 10;258(5):3215-21.
[Text Abstract on PubMed]

Comparison of the actin binding and filament formation properties of phosphorylated and dephosphorylated Acanthamoeba myosin II.
Collins JH, Kuznicki J, Bowers B, Korn ED.
Biochemistry. 1982 Dec 21;21(26):6910-5.
[Text Abstract on PubMed]

The regulation of actin polymerization and the inhibition of monomeric actin ATPase activity by Acanthamoeba profilin.
Tobacman LS, Korn ED.
J. Biol. Chem. 1982 Apr 25;257(8):4166-70.
[Text Abstract on PubMed]

Localization of the three phosphorylation sites on each heavy chain of Acanthamoeba myosin II to a segment at the end of the tail.
Collins JH, Côté GP, Korn ED.
J. Biol. Chem. 1982 Apr 25;257(8):4529-34.
[Text Abstract on PubMed]

Actin polymerization and its regulation by proteins from nonmuscle cells.
Korn ED.
Physiol. Rev. 1982 Apr;62(2):672-737.
[Text Abstract on PubMed]

Myosins from Acanthamoeba castellanii.
Korn ED, Collins JH, Maruta H.
Meth. Enzymol. 1982;85 Pt B:357-63.
[Text Abstract on PubMed]

Acanthamoeba castellanii: methods and perspectives for study of cytoskeleton proteins.
Korn ED.
Methods Cell Biol. 1982;25 Pt B:313-32.
[Text Abstract on PubMed]

Identification of three phosphorylation sites on each heavy chain of Acanthamoeba myosin II.
Côté GP, Collins JH, Korn ED.
J. Biol. Chem. 1981 Dec 25;256(24):12811-6.
[Text Abstract on PubMed]

Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin.
Brenner SL, Korn ED.
J. Biol. Chem. 1981 Aug 25;256(16):8663-70.
[Text Abstract on PubMed]

Isolation and characterization of covalently cross-linked actin dimer.
Mockrin SC, Korn ED.
J. Biol. Chem. 1981 Aug 10;256(15):8228-33.
[Text Abstract on PubMed]

Purification and characterization of actin-activatable, Ca2+-sensitive myosin II from Acanthamoeba.
Collins JH, Korn ED.
J. Biol. Chem. 1981 Mar 10;256(5):2586-95.
[Text Abstract on PubMed]

Proteolytic separation of the actin-activatable ATPase site from the phosphorylation site on the heavy chain of Acanthamoeba myosin IA.
Maruta H, Korn ED.
J. Biol. Chem. 1981 Jan 10;256(1):503-6.
[Text Abstract on PubMed]

Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins.
Maruta H, Korn ED.
J. Biol. Chem. 1981 Jan 10;256(1):499-502.
[Text Abstract on PubMed]

Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5'-triphosphate.
Mockrin SC, Korn ED.
Biochemistry. 1980 Nov 11;19(23):5359-62.
[Text Abstract on PubMed]

Actin activation of Ca2+-sensitive Mg2+-ATPase activity of Acanthamoeba myosin II is enhanced by dephosphorylation of its heavy chains.
Collins JH, Korn ED.
J. Biol. Chem. 1980 Sep 10;255(17):8011-4.
[Text Abstract on PubMed]

Evidence for differential intracellular localization of the Acanthamoeba myosin isoenzymes.
Gadasi H, Korn ED.
Nature. 1980 Jul 31;286(5772):452-6.
[Text Abstract on PubMed]

Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation. Evidence for oligomeric actin in the erythrocyte cytoskeleton.
Brenner SL, Korn ED.
J. Biol. Chem. 1980 Feb 25;255(4):1670-6.
[Text Abstract on PubMed]

The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization.
Brenner SL, Korn ED.
J. Biol. Chem. 1980 Feb 10;255(3):841-4.
[Text Abstract on PubMed]

Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill.
Brenner SL, Korn ED.
J. Biol. Chem. 1979 Oct 25;254(20):9982-5.
[Text Abstract on PubMed]

Immunochemical analysis of Acanthamoeba myosins IA, IB, and II.
Gadasi H, Korn ED.
J. Biol. Chem. 1979 Sep 10;254(17):8095-8.
[Text Abstract on PubMed]

Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin.
Brenner SL, Korn ED.
J. Biol. Chem. 1979 Sep 10;254(17):8620-7.
[Text Abstract on PubMed]

Cooperative binding of tropomyosin to muscle and Acanthamoeba actin.
Yang YZ, Korn ED, Eisenberg E.
J. Biol. Chem. 1979 Aug 10;254(15):7137-40.
[Text Abstract on PubMed]

Acanthamoeba profilin. A protein of low molecular weight from Acanpthamoeba castellanii that inhibits actin nucleation.
Reichstein E, Korn ED.
J. Biol. Chem. 1979 Jul 10;254(13):6174-9.
[Text Abstract on PubMed]

Multiple forms of Acanthamoeba myosin I.
Maruta H, Gadasi H, Collins JH, Korn ED.
J. Biol. Chem. 1979 May 10;254(9):3624-30.
[Text Abstract on PubMed]

Peptide maps of the myosin isoenzymes of Acanthamoeba castellanii.
Gadasi H, Maruta H, Collins JH, Korn ED.
J. Biol. Chem. 1979 May 10;254(9):3631-6.
[Text Abstract on PubMed]

Binding of tropomyosin to copolymers of Acanthamoeba actin and muscle actin.
Yang YZ, Korn ED, Eisenberg E.
J. Biol. Chem. 1979 Mar 25;254(6):2084-8.
[Text Abstract on PubMed]

The isolated heavy chain of an Acanthamoeba myosin contains full enzymatic activity.
Maruta H, Gadasi H, Collins JH, Korn ED.
J. Biol. Chem. 1978 Sep 25;253(18):6297-300.
[Text Abstract on PubMed]

Biochemistry of actomyosin-dependent cell motility (a review).
Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 1978 Feb;75(2):588-99.
[Text Abstract on PubMed]

Acanthamoeba cofactor protein is a heavy chain kinase required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I.
Maruta H, Korn ED.
J. Biol. Chem. 1977 Dec 10;252(23):8329-32.
[Text Abstract on PubMed]

Comparative biochemistry of non-muscle actins.
Gordon DJ, Boyer JL, Korn ED.
J. Biol. Chem. 1977 Nov 25;252(22):8300-9.
[Text Abstract on PubMed]

Acanthamoeba myosin II.
Maruta H, Korn ED.
J. Biol. Chem. 1977 Sep 25;252(18):6501-9.
[Text Abstract on PubMed]

Interaction between Acanthamoeba actin and rabbit skeletal muscle tropomyosin.
Yang YZ, Gordon DJ, Korn ED, Eisenberg E.
J. Biol. Chem. 1977 May 25;252(10):3374-8.
[Text Abstract on PubMed]

Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin.
Maruta H, Korn ED.
J. Biol. Chem. 1977 Jan 10;252(1):399-402.
[Text Abstract on PubMed]

Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin.
Gordon DJ, Yang YZ, Korn ED.
J. Biol. Chem. 1976 Dec 10;251(23):7474-9.
[Text Abstract on PubMed]

Characterization of cytoplasmic actin isolated from Acanthamoeba castellanii by a new method.
Gordon DJ, Eisenberg E, Korn ED.
J. Biol. Chem. 1976 Aug 10;251(15):4778-86.
[Text Abstract on PubMed]

Lipophosphonoglycan of the plasma membrane of A canthamoeba castellanii. Inositol and phytosphingosine content and general structural features.
Dearborn DG, Smith S, Korn ED.
J. Biol. Chem. 1976 May 25;251(10):2976-82.
[Text Abstract on PubMed]

Plasma membrane and soluble lysophospholipases of Acanthamoeba castellanii.
Victoria EJ, Korn ED.
Arch. Biochem. Biophys. 1975 Nov;171(1):255-8.
[Text Abstract on PubMed]

Interaction of phospholipid vesicles with cells. Endocytosis and fusion as alternate mechanisms for the uptake of lipid-soluble and water-soluble molecules.
Batzri S, Korn ED.
J. Cell Biol. 1975 Sep;66(3):621-34.
[Text Abstract on PubMed]

Enzymes of phospholipid metabolism in the plasma membrane of Acanthamoeba castellanii.
Victoria EJ, Korn ED.
J. Lipid Res. 1975 Jan;16(1):54-60.
[Text Abstract on PubMed]

Localization of lipophosphonoglycan on both sides of Acanthamoeba plasma membrane.
Bowers B, Korn ED.
J. Cell Biol. 1974 Aug;62(2):533-40.
[Text Abstract on PubMed]

Lipophosphonoglycan of the plasma membrance of Acanthamoeba castellanii. Isolation from whole amoebae and identification of the water-soluble products of acid hydrolysis.
Korn ED, Dearborn DG, Wright PL.
J. Biol. Chem. 1974 Jun 10;249(11):3335-41.
[Text Abstract on PubMed]

Lipophosphonoglycan of the plasma membrane of Acanthamoeba castellanii. Fatty acid composition.
Dearborn DG, Korn ED.
J. Biol. Chem. 1974 Jun 10;249(11):3342-6.
[Text Abstract on PubMed]

Endycytosis and exocytosis: role of microfilaments and involvement of phospholipids in membrane fusion.
Korn ED, Bowers B, Batzri S, Simmons SR, Victoria EJ.
J. Supramol. Struct. 1974;2(5-6):517-28.
[Text Abstract on PubMed]

The isolation of the amoeba plasma membrane and the use of latex beads for the isolation of phagocytic vacuole (phagosome) membranes from amoebae including the culture techniques for amoebae.
Korn ED.
Meth. Enzymol. 1974;31:686-98.
[Text Abstract on PubMed]

Cytochemical identification of phosphatase activity in the contractile vacuole of Acanthamoeba castellanii.
Bowers B, Korn ED.
J. Cell Biol. 1973 Dec;59(3):784-91.
[Text Abstract on PubMed]

Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin.
Pollard TD, Korn ED.
J. Biol. Chem. 1973 Jul 10;248(13):4682-90.
[Text Abstract on PubMed]

Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg 2+ adenosine triphosphatase activity.
Pollard TD, Korn ED.
J. Biol. Chem. 1973 Jul 10;248(13):4691-7.
[Text Abstract on PubMed]

Single bilayer liposomes prepared without sonication.
Batzri S, Korn ED.
Biochim. Biophys. Acta. 1973 Apr 16;298(4):1015-9.
[Text Abstract on PubMed]

Inhibition of Mg ++ ATPase activity of actin-activated Acanthamoeba myosin by muscle troponin-tropomyosin: implications for the mechanism of control of amoeba motility and muscle contraction.
Pollard TD, Eisenberg E, Korn ED, Kielley WW.
Biochem. Biophys. Res. Commun. 1973 Apr 2;51(3):693-8.
[Text Abstract on PubMed]

Phosphonoglycan. A major polysaccharide constituent of the amoeba plasma membrane contains 2-aminoethylphosphonic acid and 1-hydroxy-2-aminoethylphosphonic acid.
Korn ED, Dearborn DG, Fales HM, Sokoloski EA.
J. Biol. Chem. 1973 Mar 25;248(6):2257-9.
[Text Abstract on PubMed]

Electron microscopic identification of actin associated with isolated amoeba plasma membranes.
Pollard TD, Korn ED.
J. Biol. Chem. 1973 Jan 25;248(2):448-50.
[Text Abstract on PubMed]

Macromolecular composition of an amoeba plasma membrane.
Korn ED, Wright PL.
J. Biol. Chem. 1973 Jan 25;248(2):439-47.
[Text Abstract on PubMed]

Discussion paper: amoeba plasma membrane.
Korn ED, Olivecrona T.
Ann. N. Y. Acad. Sci. 1972 Jun 20;195:142-6.
[Text Abstract on PubMed]

Acanthamoeba actin. Composition of the peptide that contains 3-methylhistidine and a peptide that contains N e -methyllysine.
Weihing RR, Korn ED.
Biochemistry. 1972 Apr 11;11(8):1538-43.
[Text Abstract on PubMed]

Plasma and phagosome membranes of Acanthamoeba castellanii.
Ulsamer AG, Wright PL, Wetzel MG, Korn ED.
J. Cell Biol. 1971 Oct;51(1):193-215.
[Text Abstract on PubMed]

Composition of an amoeba plasma membrane.
Korn ED, Olivecrona T.
Biochem. Biophys. Res. Commun. 1971 Oct 1;45(1):90-7.
[Text Abstract on PubMed]

Single bilayer liposomes.
Johnson SM, Bangham AD, Hill MW, Korn ED.
Biochim. Biophys. Acta. 1971 Jun 1;233(3):820-6.
[Text Abstract on PubMed]

Acanthamoeba actin. Isolation and properties.
Weihing RR, Korn ED.
Biochemistry. 1971 Feb 16;10(4):590-600.
[Text Abstract on PubMed]

Filaments of Amoeba proteus. II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts.
Pollard TD, Korn ED.
J. Cell Biol. 1971 Jan;48(1):216-9.
[Text Abstract on PubMed]

Epsilon-N-dimethyllysine in amoeba actin.
Weihing RR, Korn ED.
Nature. 1970 Sep 19;227(5264):1263-4.
[Text Abstract on PubMed]

The effect of charge on the physical and biological properties of liposomes. A report of work in progress.
Korn ED.
J. Physiol. (Lond.). 1970 Sep;210(2):112P-113P.
[Text Abstract on PubMed]

Ultrastructural characterization of F-actin isolated from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin.
Pollard TD, Shelton E, Weihing RR, Korn ED.
J. Mol. Biol. 1970 May 28;50(1):91-7.
[Text Abstract on PubMed]

The enzymatic aromatization of the B ring of delta5,7-sterols.
Korn ED, Ulsamer AG, Weihing RR, Wetzel MG, Wright PL.
Biochim. Biophys. Acta. 1969 Dec 17;187(4):555-63.
[Text Abstract on PubMed]

Lipids of Acanthamoeba castellanii. Composition and effects of phagocytosis on incorporation of radioactive precursors.
Ulsamer AG, Smith FR, Korn ED.
J. Cell Biol. 1969 Oct;43(1):105-14.
[Text Abstract on PubMed]

Phagocytosis of latex beads by Acahamoeba castellanii (Neff). 3. Isolation of the phagocytic vesicles and their membranes.
Wetzel MG, Korn ED.
J. Cell Biol. 1969 Oct;43(1):90-104.
[Text Abstract on PubMed]

The sterols of Trypanosoma cruzi and Crithidia fasciculata.
Korn ED, Von Brand T, Tobie EJ.
Comp. Biochem. Physiol. 1969 Aug 15;30(4):601-10.
[Text Abstract on PubMed]

Ameba actin: the presence of 3-methylhistidine.
Weihing RR, Korn ED.
Biochem. Biophys. Res. Commun. 1969 Jun 27;35(6):906-12.
[Text Abstract on PubMed]

The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment.
Bowers B, Korn ED.
J. Cell Biol. 1969 Jun;41(3):786-805.
[Text Abstract on PubMed]

Current concepts of membrane structure and function.
Korn ED.
Fed. Proc. 1969 Jan-Feb;28(1):6-11.
[Text Abstract on PubMed]

Cell membranes: structure and synthesis.
Korn ED.
Annu. Rev. Biochem. 1969;38:263-88.
[Text Abstract on PubMed]

The fine structure of Acanthamoeba castellanii. I. The trophozoite.
Bowers B, Korn ED.
J. Cell Biol. 1968 Oct;39(1):95-111.
[Text Abstract on PubMed]

Structure and function of the plasma membrane. A biochemical perspective.
Korn ED.
J. Gen. Physiol. 1968 Jul;52(1):257Suppl-78s.
[Text Abstract on PubMed]

7-Dehydrostigmasterol and ergosterol: the major sterols of an amoeba.
Smith FR, Korn ED.
J. Lipid Res. 1968 Jul;9(4):405-8.
[Text Abstract on PubMed]

A chromatographic and spectrophotometric study of the products of the reaction of osmium tetroxide with unsaturated lipids.
Korn ED.
J. Cell Biol. 1967 Aug;34(2):627-38.
[Text Abstract on PubMed]

Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events.
Korn ED, Weisman RA.
J. Cell Biol. 1967 Jul;34(1):219-27.
[Text Abstract on PubMed]

Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties.
Weisman RA, Korn ED.
Biochemistry. 1967 Feb;6(2):485-97.
[Text Abstract on PubMed]

Structure of biological membranes.
Korn ED.
Science. 1966 Sep 23;153(3743):1491-8.
[Text Abstract on PubMed]

Metabolism of unsaturated fatty acids in protozoa.
Lees AM, Korn ED.
Biochemistry. 1966 May;5(5):1475-81.
[Text Abstract on PubMed]

Uptake of fatty acids by Acanthamoeba.
Weisman RA, Korn ED.
Biochim. Biophys. Acta. 1966 Apr 4;116(2):229-42.
[Text Abstract on PubMed]

I. Loss of lipids during preparation of amoebae for electron microscopy.
Korn ED, Weisman RA.
Biochim. Biophys. Acta. 1966 Apr 4;116(2):309-16.
[Text Abstract on PubMed]

II. Synthesis of bis(methyl 9,10-dihydroxystearate)osmate from methyl oleate and osmium tetroxide under conditions used for fixation of biological material.
Korn ED.
Biochim. Biophys. Acta. 1966 Apr 4;116(2):317-24.
[Text Abstract on PubMed]

3. Modification of oleic acid during fixation of Amoebae by osmium tetroxide.
Korn ED.
Biochim. Biophys. Acta. 1966 Apr 4;116(2):325-35.
[Text Abstract on PubMed]

Separation of positional isomers of long-chain unsaturated fatty acid methyl esters by thin-layer chromatography and presence of mono-trans, di-cis isomers in commerical linolenic acid.
Lees AM, Korn ED.
Biochim. Biophys. Acta. 1966 Apr 4;116(2):403-6.
[Text Abstract on PubMed]

THE REACTIONS OF TRANS-ALPHA, BETA-HEXADECENOYL COENZYME A AND CIS- AND TRANS-BETA, GAMMA-HEXADECENOYL COENZYME A CATALYZED BY ENZYMES FROM GUINEA PIGS LIVER MITOCHONDRIA.
DAVIDOFF F, KORN ED.
J. Biol. Chem. 1965 Apr;240:1549-58.
[Text Abstract on PubMed]

SYNTHESIS OF UNSATURATED FATTY ACIDS IN THE SLIME MOLD PHYSARUM POLYCEPHALUM AND THE ZOOFLAGELLATES LEISHMANIA TARENTOLAE, TRYPANOSOMA LEWISI, AND CRITHIDIA SP.: A COMPARATIVE STUDY.
KORN ED, GREENBLATT CL, LEES AM.
J. Lipid Res. 1965 Jan;6:43-50.
[Text Abstract on PubMed]

THE CONVERSION OF LONG CHAIN SATURATED FATTY ACIDS TO THEIR ALPHA, BETA-UNSATURATED, BETA, GAMMA-UNSATURATED, AND BETA-HYDROXY DERIVATIVES BY ENZYMES FROM THE CELLULAR SLIME MOLD, DICTYOSTELIUM DISCOIDEUM.
DAVIDOFF F, KORN ED.
J. Biol. Chem. 1964 Aug;239:2496-506.
[Text Abstract on PubMed]

The fatty acids of Euglena gracilis.
Korn ED.
J. Lipid Res. 1964 Jul;5(3):352-62.
[Text Abstract on PubMed]

Presence of glycerokinase in guinea pig mammary gland and the incorporation of glycerol into glycerides.
McBride OW, Korn ED.
J. Lipid Res. 1964 Jul;5(3):442-7.
[Text Abstract on PubMed]

The uptake of doubly labeled chylomicrons by guinea pig mammary gland and liver.
McBride OW, Korn ED.
J. Lipid Res. 1964 Jul;5(3):459-67.
[Text Abstract on PubMed]

Acceptors of fatty acid for glyceride synthesis in guinea pig mammary gland.
McBride OW, Korn ED.
J. Lipid Res. 1964 Jul;5(3):448-52.
[Text Abstract on PubMed]

Uptake of free fatty acids and chylomicron glycerides by guinea pig mammary gland in pregnancy and lactation.
McBride OW, Korn ED.
J. Lipid Res. 1964 Jul;5(3):453-8.
[Text Abstract on PubMed]

BIOSYNTHESIS OF UNSATURATED FATTY ACIDS IN ACANTHAMOEBA SP.
KORN ED.
J. Biol. Chem. 1964 Feb;239:396-400.
[Text Abstract on PubMed]

The polyunsaturated 20-carbon and 22-carbon fatty acids of Euglena.
Korn ED.
Biochem. Biophys. Res. Commun. 1964;14:1-6.
[Text Abstract on PubMed]

SYNTHESIS OF ALPHA-LINOLENIC ACID BY LEISHMANIA ENRIETTII.
KORN ED, GREENBLATT CL.
Science. 1963 Dec 6;142(3597):1301-3.
[Text Abstract on PubMed]

FATTY ACIDS OF ACANTHAMOEBA SP.
KORN ED.
J. Biol. Chem. 1963 Nov;238:3584-7.
[Text Abstract on PubMed]

FATTY ACID AND PHOSPHOLIPID COMPOSITION OF THE CELLULAR SLIME MOLD, DICTYOSTELIUM DISCOIDEUM. THE OCCURRENCE OF PREVIOUSLY UNDESCRIBED FATTY ACIDS.
DAVIDOFF F, KORN ED.
J. Biol. Chem. 1963 Oct;238:3199-209.
[Text Abstract on PubMed]

THE BIOSYNTHESIS OF FATTY ACIDS IN THE CELLULAR SLIME MOLD, DICTYOSTELIUM DISCOIDEUM.
DAVIDOFF F, KORN ED.
J. Biol. Chem. 1963 Oct;238:3210-5.
[Text Abstract on PubMed]

THE LIPOPROTEIN LIPASE OF MAMMARY GLAND AND THE CORRELATION OF ITS ACTIVITY TO LACTATION.
MCBRIDE OW, KORN ED.
J. Lipid Res. 1963 Jan;4:17-20.
[Text Abstract on PubMed]

The kinetics of the inhibition of lipoprotein lipase by polyanions and polycations.
KORN ED.
J. Biol. Chem. 1962 Nov;237:3423-9.
[Text Abstract on PubMed]

Further studies on the biosynthesis of fatty acids in the cellular slime mold.
DAVIDOFF F, KORN ED.
Biochem. Biophys. Res. Commun. 1962 Oct 31;9:328-33.
[Text Abstract on PubMed]

Synthesis of unsaturated fatty acids in the cellular slime mold.
DAVIDOFF F, KORN ED.
Biochem. Biophys. Res. Commun. 1962 Sep 25;9:44-8.
[Text Abstract on PubMed]

The fatty acid and positional specificities of lipoprotein lipase.
KORN ED.
J. Biol. Chem. 1961 Jun;236:1638-42.
[Text Abstract on PubMed]

The formation of unsaturated disacharides from mucopoly-saccharides and their cleavage to alpha-keto acid by bacterial enzymes.
LINKER A, HOFFMAN P, MEYER K, SAMPSON P, KORN ED.
J. Biol. Chem. 1960 Nov;235:3061-5.
[Text Abstract on PubMed]

Physical and chemical properties of polysaccharides and glycoproteins of the yeast-cell wall.
KORN ED, NORTHCOTE DH.
Biochem. J. 1960 Apr;75:12-7.
[Text Abstract on PubMed]

The enzymatic sulfation of heparin.
KORN ED.
J. Biol. Chem. 1959 Jul;234(7):1647-50.
[Text Abstract on PubMed]

The syntbesis of heparin by slices of mouse mast cell tumor.
KORN ED.
J. Biol. Chem. 1959 Jun;234(6):1321-4.
[Text Abstract on PubMed]

The isolation of heparin from mouse mast cell tumor.
KORN ED.
J. Biol. Chem. 1959 Jun;234(6):1325-9.
[Text Abstract on PubMed]

Observations on the use of cellulose ion exchangers for the chromatographic separation of nucleotides.
KORN ED.
Biochim. Biophys. Acta. 1959 Apr;32:554-5.
[Text Abstract on PubMed]

The degradation of hyaluronate, the chondroitin sulfates and heparin by bacterial enzymes (flavobacterium).
HOFFMAN P, LINKER A, SAMPSON P, MEYER K, KORN ED.
Biochim. Biophys. Acta. 1957 Sep;25(3):658-9.
[Text Abstract on PubMed]

Inactivation of lipoprotein lipase by heparinase.
KORN ED.
J. Biol. Chem. 1957 Jun;226(2):827-32.
[Text Abstract on PubMed]

Lipoprotein lipase of chicken adipose tissue.
KORN ED, QUIGLEY.
J. Biol. Chem. 1957 Jun;226(2):833-9.
[Text Abstract on PubMed]

The degradation of heparin by bacterial enzymes. III. A comparison of the degradation of heparin, hyaluronic acid, and chondroitin sulfate.
KORN ED.
J. Biol. Chem. 1957 Jun;226(2):841-4.
[Text Abstract on PubMed]

The degradation of heparin by bacterial enzymes. I. Adaptation and lyophilized cells.
KORN ED, PAYZA AN.
J. Biol. Chem. 1956 Dec;223(2):853-8.
[Text Abstract on PubMed]

The degradation of heparin by bacterial enzymes. II. Acetone powder extracts.
KORN ED, PAYZA AN.
J. Biol. Chem. 1956 Dec;223(2):859-64.
[Text Abstract on PubMed]

Partial inactivation of lipoprotein lipase by bacterial heparinase.
KORN ED.
Science. 1956 Sep 14;124(3220):489.
[Text Abstract on PubMed]

Enzymic degradation of heparin.
KORN ED, PAYZA AN.
Biochim. Biophys. Acta. 1956 Jun;20(3):596-7.
[Text Abstract on PubMed]

Bacterial degradation of heparin.
PAYZA AN, KORN ED.
Nature. 1956 Jan 14;177(4498):88-9.
[Text Abstract on PubMed]

Biosynthesis of the purines. VII. Synthesis of nucleotides from bases by partially purified enzymes.
KORN ED, REMY CN, WASILEJKO HC, BUCHANAN JM.
J. Biol. Chem. 1955 Dec;217(2):875-83.
[Text Abstract on PubMed]

Biosynthesis of the purines. VI. Purification of liver nucleoside phosphorylase and demonstration of nucleoside synthesis from 4-amino-5-imidazolecarboxamide, adenine, and 2, 6-diaminopurine.
KORN ED, BUCHANAN JM.
J. Biol. Chem. 1955 Nov;217(1):183-91.
[Text Abstract on PubMed]

Studies on lipoprotein lipase of rat heart and adipose tissue.
KORN ED, QUIGLEY.
Biochim. Biophys. Acta. 1955 Sep;18(1):143-5.
[Text Abstract on PubMed]

Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart.
KORN ED.
J. Biol. Chem. 1955 Jul;215(1):1-14.
[Text Abstract on PubMed]

Clearing factor, a heparin-activated lipoprotein lipase. II. Substrate specificity and activation of coconut oil.
KORN ED.
J. Biol. Chem. 1955 Jul;215(1):15-26.
[Text Abstract on PubMed]

Properties of clearing factor obtained from rat heart acetone powder.
KORN ED.
Science. 1954 Sep 3;120(3114):399-400.
[Text Abstract on PubMed]

Studies on the enzymatic conversion of hypoxanthine to inosinic acid.
KORN ED, BUCHANAN JM.
Am. J. Med. Sci. 1953 May;225(5):580.
[Text Abstract on PubMed]

Twitter iconTwitter         Facebook iconFacebook         YouTube iconYouTube        Google+ iconGoogle+