Accessible Search Form           Advanced Search

  • PRINT  | 

Edward D. Korn, Ph.D.

Laboratory of Cell Biology

Edward D. Korn, Ph.D.
Senior Investigator
Laboratory of Cell Biology


Building 50 Room 2517
50 South Dr
Bethesda, MD 20892
P: +1 301 496 1616
F: +1 301 402 1519
korned2@nhlbi.nih.gov

Background

Edward Korn graduated from the University of Pennsylvania with an A.B. in 1949 and a Ph.D. in 1954. He completed fellowships at the University of Pennsylvania and the NHLBI. Since 1974, he has been Chief of the Laboratory of Cell Biology and Head of the Section on Cellular Biochemistry and Ultrastructure at the NHLBI. For more than a decade he was a professor at the Johns Hopkins University FAES Graduate Program. Dr. Korn was awarded the NIH Merit Award in 2001 and the Nencki Award from the Nencki Institute of Experimental Biology in Poland. He has authored or coauthored more than 250 peer-reviewed papers and more than 60 book chapters and edited books. He has been an Associate Editor of the Journal of Biological Chemistry and served on several editorial boards including the Journal of Biological Chemistry, Journal of Molecular Cardiology, and Protein Profile, among others. Dr. Korn is a member of the National Academy of Sciences and currently sits on the board for the Proceedings of the National Academy of Sciences, USA. He is also a member of the American Society of Biochemistry and Molecular Biology and American Society of Cell Biology.

Research Interests

Movement of and within cells is fundamental to life, whether in development of an organism, defense against infection, repair after injury, or in pathologies such as cancer and heart disease. Myosin was first identified in skeletal muscle as a motor protein critical to muscle contraction. Two heavy and two pairs of light chains comprise this conventional myosin (now known as myosin II), which polymerizes into filaments to interact with actin and generate force through the hydrolysis of ATP. Dr. Korn has been studying the function and regulation of the actomyosin system in its diverse forms since he discovered the first unconventional non-filamentous myosin, myosin I (containing only a single heavy chain), in the single-cell soil protozoan Acanthamoeba castellanii, approximately forty years ago.

Genomic approaches currently divide the myosin superfamily into 35 classes with many thousands of members. Multiple myosins are found in single eukaryotic cells and have very specific roles in distinct cellular processes including cell division, chemotaxis, and translocation of organelles. Each of these functions exists under tight regulatory control. Dr. Korn’s laboratory brings the tools of biochemistry and cell biology to focus on three research areas: the role of the actin cytoskeleton in Dictyostelium fruiting body development, the molecular basis of the regulation of actin-activated ATPase activity in myosin II, and the mechanism of association of myosin I with cell membranes.

Dictyostelium amoebae have long been a model system for studying cellular functions. Starvation induces these cells to secrete cAMP, which attracts other cells to spur the formation of multicellular mounds that differentiate and develop into fruiting bodies containing spores of Dictyostelium. Recently, Dr. Korn and his colleagues have found that these sequential processes of cAMP signaling, chemotaxis, development, and differentiation are dependent on the integrity of the actin cytoskeleton. They are partially or completely aborted by mutations of a specific tyrosine residue in actin, and by deletion of actin crosslinking proteins cortexillin I and II, both of which affect actin filament assembly.

The assembly and enzymatic activity of some myosins is regulated by phosphorylation of their heavy chains. Dr. Korn has recently found that the actin-activated ATPase activity of Acanthamoeba myosin II is down-regulated by phosphorylation of a serine in loop-2 of the motor domain, a region known to be at the actin-myosin interface, and that filament formation of Acanthamoeba myosin II is regulated by phosphorylation of up to four serines in a repeating sequence in the non-helical tailpiece of its two heavy chains.

To influence cell shape and motility, as well as intracellular transport, the actomyosin system interacts with cell membranes. Dr. Korn’s laboratory is interested in the mechanism of association of class I myosins with membranes, in particular the basis of the association of different class I myosins with different membranes in the same cell. He and his colleagues have now extended initial studies that identified a basic-hydrophobic region responsible for the co-localization of Acanthamoeba myosin IC and Dictyostelium myosin IB with phosphatidylinositol 4,5-bisphosphate in the plasma membrane.

Through these discrete yet interconnected research paths, the Korn lab hopes to better characterize the diverse functions of the actomyosin system at the molecular level and improve our understanding of this important cellular system.

Selected Publications

Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2.
Liu X, Lee DY, Cai S, Yu S, Shu S, Levine RL, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2013 Jan 2;110(1):E23-32.
[Text Abstract on PubMed]

Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece.
Liu X, Hong MS, Shu S, Yu S, Korn ED.
Proc. Natl. Acad. Sci. U.S.A. 2013 Jan 2;110(1):E33-40.
[Text Abstract on PubMed]

Molecular basis of dynamic relocalization of Dictyostelium myosin IB.
Brzeska H, Guag J, Preston GM, Titus MA, Korn ED.
J. Biol. Chem. 2012 Apr 27;287(18):14923-36.
[Text Abstract on PubMed]

Actin cross-linking proteins cortexillin I and II are required for cAMP signaling during Dictyostelium chemotaxis and development.
Shu S, Liu X, Kriebel PW, Daniels MP, Korn ED.
Mol. Biol. Cell. 2012 Jan;23(2):390-400.
[Text Abstract on PubMed]

Acanthamoeba myosin IC colocalizes with phosphatidylinositol 4,5-bisphosphate at the plasma membrane due to the high concentration of negative charge.
Brzeska H, Hwang KJ, Korn ED.
J. Biol. Chem. 2008 Nov 14;283(46):32014-23.
[Text Abstract on PubMed]

Edward D. Korn's Full List of Publications

DIR News
July 16, 2014
We are genetically linked to our friendsExternal link Disclaimer
July 11, 2014
NHLBI funds development of a bioresorbable scaffold for pediatric pulmonary artery stenosisExternal link Disclaimer
June 13, 2014
NIH scientists take totally tubular journey through brain cells
May 15, 2014
Reprogrammed cells slow to grow tumours in monkeysExternal link Disclaimer

View all DIR News

Last Updated: April 26, 2013