Accessible Search Form           Advanced Search

  • PRINT  | 

Mark A. Knepper, M.D., Ph.D.

Epithelial Systems Biology Laboratory

Mark A. Knepper, M.D., Ph.D.
Senior Investigator
Epithelial Systems Biology Laboratory


Building 10 Room 6N307
10 Center Dr
Bethesda, MD 20892
P: +1 301 496 3064
F: +1 301 402 1443
knepperm@nhlbi.nih.gov

Background

Mark Knepper received a B.S. in chemical engineering from the University of Michigan, a Ph.D. in biomedical engineering, and a M.D. from Case Western Reserve University (CWRU), and has an honorary Ph.D. from the University of Aarhus in Denmark. He has been a NIH scientist since 1978 and is currently head of the Epithelial Systems Biology Laboratory at the NHLBI. Dr. Knepper has received the H.W. Smith Award (the highest award of the American Society of Nephrology), the R.W. Berliner Award at Yale University, the C.W. Gottschalk Award of the American Physiological Society, the Hugh Davson Lectureship of the American Physiological Society, and the D.W. Seldin Lectureship of the American Heart Association (Council on the Kidney in Cardiovascular Disease). He has published over 400 peer-reviewed papers on renal physiology, hypertension, nephrology, and systems biology. His editorial positions have spanned the American Journal of Physiology, and the Journal of Clinical Investigation. Dr. Knepper is a member of the American Heart Association, American Physiological Society, American Association for the Advancement of Science, American Society of Nephrology, and Biomedical Engineering Society.

Research Interests

Dr. Knepper’s research concentrates on the physiology and pathophysiology of the kidney, with particular focus on regulation of water and salt transport by the peptide hormone vasopressin. Maintaining the right balance of water and electrolytes in the body is a matter of life and death, so it is not surprising that several physiological mechanisms have evolved to regulate water retention and excretion. Disruption of any one of these mechanisms can lead to severe water balance disorders. Using a systems approach, Dr. Knepper is applying comprehensive proteomics, DNA sequencing, and computational approaches to understand the physiological principles and molecular mechanisms that govern excretion of water and urea by the kidney.

Early in his career, Dr. Knepper began to combine laboratory experimentation with theoretical and computational modeling, which led him to discover that urea transport in the renal collecting ducts occurs via specialized urea channel proteins. In the 1990s, he carried out seminal studies on aquaporins, a family of water channel proteins. The studies showed that vasopressin regulates the water channel aquaporin-2 in two ways; it regulates trafficking of aquaporin-2 water channels to and from the plasma membrane, and it regulates the expression of the aquaporin-2 gene in renal collecting duct cells.

Between the signal (vasopressin) and the response (more channels on the membrane surface) is a complex and coordinated alteration of multiple cellular components on multiple time scales. This includes modifications on the channel proteins themselves that signal their destination and localized changes in actomyosin to allow for insertion of additional channels. Thanks to advanced proteomics techniques facilitated by knowledge from large-scale genome sequencing projects, Dr. Knepper and his colleagues are now able to assess these changes simultaneously and over time. They have produced a number of databases to make the large-scale (proteomic and transcriptomic) data available to scientists worldwide (http://helixweb.nih.gov/ESBL/Database/index.html).

Dr. Knepper has demonstrated a key role for cyclic AMP-dependent calcium mobilization and myosin regulatory light chain phosphorylation in renal principal cells, which he proved to be critical for vasopressin action. He and his colleagues have pioneered methods for application of phosphoproteomics (using LC-MS/MS) to physiological signaling systems revealing the kinase classes activated and inactivated by vasopressin. These studies demonstrated that vasopressin regulates phosphorylation of a cluster of four serines in the carboxy-terminal tail of aquaporin-2 as a critical step in its translocation to the cell membrane.

Progress in large-scale experimental technologies depends on continuing development of computational methods for analysis of the data and for large-scale data integration. Dr. Knepper’s group is heavily invested in the development of such computational approaches and resulting software has been made readily available to scientists worldwide (http://helixweb.nih.gov/ESBL/).

 

Additional databases can be found below:

General Proteomics

IMCD Proteome Database

IMCD Membrane Proteome Database

mpkCCD Proteome Database

Phosphoproteomics

IMCD Phosphoproteome Database

Collecting Duct Phosphoproteome Database

mTAL Phosphoproteome Database

Renal Cortical Membrane Phosphoproteome Database

mpkCCD Phosphoproteome Database

Transcriptomes

IMCD Transcriptome Database

mTAL Transcriptome Database

Rat Proximal Tubule Transcriptome Database

mpkCCD Transcriptome Database

Human Urinary Exosome Proteomics:

Urinary Exosome Protein Database

Selected Publications

Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics.
Hoffert JD, Pisitkun T, Saeed F, Song JH, Chou CL, Knepper MA.
Mol. Cell Proteomics. 2012 Feb;11(2):M111.014613.
[Text Abstract on PubMed]

NHLBI-AbDesigner: an online tool for design of peptide-directed antibodies.
Pisitkun T, Hoffert JD, Saeed F, Knepper MA.
Am. J. Physiol., Cell Physiol. 2012 Jan 1;302(1):C154-64.
[Text Abstract on PubMed]

Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells.
Khositseth S, Pisitkun T, Slentz DH, Wang G, Hoffert JD, Knepper MA, Yu MJ.
Mol. Cell Proteomics. 2011 Jan;10(1):M110.004036.
[Text Abstract on PubMed]

Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells.
Gunaratne R, Braucht DW, Rinschen MM, Chou CL, Hoffert JD, Pisitkun T, Knepper MA.
Proc. Natl. Acad. Sci. U.S.A. 2010 Aug 31;107(35):15653-8.
[Text Abstract on PubMed]

Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells.
Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA.
Proc. Natl. Acad. Sci. U.S.A. 2010 Feb 23;107(8):3882-7.
[Text Abstract on PubMed]

Mark A. Knepper's Full List of Publications

DIR News
August 28, 2014
Biophysical Society Names 2015 Award RecipientsExternal link Disclaimer
July 16, 2014
We are genetically linked to our friendsExternal link Disclaimer
July 11, 2014
NHLBI funds development of a bioresorbable scaffold for pediatric pulmonary artery stenosisExternal link Disclaimer
June 13, 2014
NIH scientists take totally tubular journey through brain cells

View all DIR News

Last Updated: July 17, 2014